Skip to main content
Top
Published in: BioDrugs 4/2012

01-08-2012 | Current Opinion

Site-Specific PEGylation of Therapeutic Proteins via Optimization of Both Accessible Reactive Amino Acid Residues and PEG Derivatives

Authors: Chun Zhang, Xiao-lan Yang, Yong-hua Yuan, Jun Pu, Professor Fei Liao

Published in: BioDrugs | Issue 4/2012

Login to get access

Abstract

Modification of accessible amino acid residues with poly(ethylene glycol) [PEG] is a widely used technique for formulating therapeutic proteins. In practice, site-specific PEGylation of all selected/engineered accessible nonessential reactive residues of therapeutic proteins with common activated PEG derivatives is a promising strategy to concomitantly improve pharmacokinetics, allow retention of activity, alleviate immunogenicity, and avoid modification isomers. Specifically, through molecular engineering of a therapeutic protein, accessible essential residues reactive to an activated PEG derivative are substituted with unreactive residues provided that protein activity is retained, and a limited number of accessible nonessential reactive residues with optimized distributions are selected/introduced. Subsequently, all accessible nonessential reactive residues are completely PEGylated with the activated PEG derivative in great excess. Branched PEG derivatives containing new PEG chains with negligible metabolic toxicity are more desirable for site-specific PEGylation. Accordingly, for the successful formulation of therapeutic proteins, optimization of the number and distributions of accessible nonessential reactive residues via molecular engineering can be integrated with the design of large-sized PEG derivatives to achieve site-specific PEGylation of all selected/engineered accessible reactive residues.
Literature
1.
go back to reference Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003 Mar; 2(3): 214–21PubMedCrossRef Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003 Mar; 2(3): 214–21PubMedCrossRef
2.
go back to reference Abuchowski A, McCoy JR, Palczuk NC, et al. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977 Jun; 252(11): 3582–6PubMed Abuchowski A, McCoy JR, Palczuk NC, et al. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977 Jun; 252(11): 3582–6PubMed
3.
4.
go back to reference Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005 Nov; 10(21): 1451–8PubMedCrossRef Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005 Nov; 10(21): 1451–8PubMedCrossRef
5.
go back to reference Wada H, Imamura I, Sako M, et al. Antitumor enzyme: polyethylene glycolmodified asparaginase. Ann N Y Acad Sci 1990 Dec; 613: 95–108PubMedCrossRef Wada H, Imamura I, Sako M, et al. Antitumor enzyme: polyethylene glycolmodified asparaginase. Ann N Y Acad Sci 1990 Dec; 613: 95–108PubMedCrossRef
6.
go back to reference Payne RW, Murphy BM, Manning MC. Product development issues for PEGylated proteins. Pharm Dev Technol 2011 Oct; 16(5): 423–40PubMedCrossRef Payne RW, Murphy BM, Manning MC. Product development issues for PEGylated proteins. Pharm Dev Technol 2011 Oct; 16(5): 423–40PubMedCrossRef
7.
go back to reference Harris JM. Polyethylene glycol chemistry: biotechnical and biomedical applications. New York: Plenum Press, 1992 Harris JM. Polyethylene glycol chemistry: biotechnical and biomedical applications. New York: Plenum Press, 1992
8.
go back to reference Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002 Jun; 54(4): 459–76PubMedCrossRef Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002 Jun; 54(4): 459–76PubMedCrossRef
9.
go back to reference Veronese FM, Mero A. The impact of pegylation on biological therapies. Biodrugs 2008 Sep; 22(5): 315–29PubMedCrossRef Veronese FM, Mero A. The impact of pegylation on biological therapies. Biodrugs 2008 Sep; 22(5): 315–29PubMedCrossRef
10.
go back to reference Lundblad RL, Noyes CM, editors. Chemical reagents for protein modification. Boca Raton, Florida: CRC Press, 1984 Lundblad RL, Noyes CM, editors. Chemical reagents for protein modification. Boca Raton, Florida: CRC Press, 1984
11.
go back to reference Grace MJ, Lee S, Bradshaw S, et al. Site of pegylation and polyethylene glycol molecule size attenuate interferon-alpha antiviral and antiproliferative activities through the JAK/STAT signaling pathway. J Biol Chem 2005 Feb; 280(8): 6327–36PubMedCrossRef Grace MJ, Lee S, Bradshaw S, et al. Site of pegylation and polyethylene glycol molecule size attenuate interferon-alpha antiviral and antiproliferative activities through the JAK/STAT signaling pathway. J Biol Chem 2005 Feb; 280(8): 6327–36PubMedCrossRef
12.
go back to reference Yu PZ, Zheng C, Chen J, et al. Investigation on PEGylation strategy of recombinant human interleukin-1 receptor antagonist. Bioorg Med Chem 2007 Oct; 15(16): 5396–405PubMedCrossRef Yu PZ, Zheng C, Chen J, et al. Investigation on PEGylation strategy of recombinant human interleukin-1 receptor antagonist. Bioorg Med Chem 2007 Oct; 15(16): 5396–405PubMedCrossRef
13.
go back to reference Zhang C, Yang XL, Feng J, et al. Effects of modification of amino groups with poly(ethylene glycol) on a recombinant uricase from Bacillus fastidiosus. Biosci Biotechnol Biochem 2010 Jun; 74(6): 1298–301PubMedCrossRef Zhang C, Yang XL, Feng J, et al. Effects of modification of amino groups with poly(ethylene glycol) on a recombinant uricase from Bacillus fastidiosus. Biosci Biotechnol Biochem 2010 Jun; 74(6): 1298–301PubMedCrossRef
14.
go back to reference Veronese FM, Monfardini C, Caliceti P, et al. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol). J Control Release 1996 Jul; 40(3): 199–209CrossRef Veronese FM, Monfardini C, Caliceti P, et al. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol). J Control Release 1996 Jul; 40(3): 199–209CrossRef
15.
go back to reference Federico R, Cona A, Caliceti P, et al. Histaminase PEGylation: preparation and characterization of a new bioconjugate for therapeutic application. J Control Release 2006 Oct; 115(2): 168–74PubMedCrossRef Federico R, Cona A, Caliceti P, et al. Histaminase PEGylation: preparation and characterization of a new bioconjugate for therapeutic application. J Control Release 2006 Oct; 115(2): 168–74PubMedCrossRef
16.
go back to reference Sato H. Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 2002 Jun; 54(4): 487–504PubMedCrossRef Sato H. Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 2002 Jun; 54(4): 487–504PubMedCrossRef
17.
go back to reference Besheer A, Hertel TC, Kressler J, et al. Enzymatically catalyzed HES conjugation using microbial transglutaminase: proof of feasibility. J Pharm Sci 2009 Nov; 98(11): 4420–8PubMedCrossRef Besheer A, Hertel TC, Kressler J, et al. Enzymatically catalyzed HES conjugation using microbial transglutaminase: proof of feasibility. J Pharm Sci 2009 Nov; 98(11): 4420–8PubMedCrossRef
18.
go back to reference Fontana A, Spolaore B, Mero A, et al. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 2008 Jan; 60(1): 13–28PubMedCrossRef Fontana A, Spolaore B, Mero A, et al. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 2008 Jan; 60(1): 13–28PubMedCrossRef
19.
go back to reference Mero A, Schiavon M, Veronese FM, et al. A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. J Control Release 2011 Aug; 154(1): 27–34PubMedCrossRef Mero A, Schiavon M, Veronese FM, et al. A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. J Control Release 2011 Aug; 154(1): 27–34PubMedCrossRef
20.
go back to reference Maullu C, Raimondo D, Caboi F, et al. Site-directed enzymatic PEGylation of the human granulocyte colony-stimulating factor. FEBS J 2009 Nov; 276(22): 6741–50PubMedCrossRef Maullu C, Raimondo D, Caboi F, et al. Site-directed enzymatic PEGylation of the human granulocyte colony-stimulating factor. FEBS J 2009 Nov; 276(22): 6741–50PubMedCrossRef
21.
go back to reference Ganson NJ, Kelly SJ, Scarlett E, et al. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther 2006 Jan; 8(1): R12PubMedCrossRef Ganson NJ, Kelly SJ, Scarlett E, et al. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther 2006 Jan; 8(1): R12PubMedCrossRef
22.
go back to reference Armstrong JK, Hempel G, Koling S, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007 Jul; 110(1): 103–11PubMedCrossRef Armstrong JK, Hempel G, Koling S, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007 Jul; 110(1): 103–11PubMedCrossRef
23.
go back to reference Sherman MR, Saifer MG, Perez-Ruiz F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev 2008 Jan; 60(1): 59–68PubMedCrossRef Sherman MR, Saifer MG, Perez-Ruiz F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev 2008 Jan; 60(1): 59–68PubMedCrossRef
24.
go back to reference Yang XL, Yuan YH, Zhan CG, et al. Uricases as therapeutic agents to treat refractory gout: current states and future directions. Drug Dev Res 2012 Mar; 73(2): 66–72PubMedCrossRef Yang XL, Yuan YH, Zhan CG, et al. Uricases as therapeutic agents to treat refractory gout: current states and future directions. Drug Dev Res 2012 Mar; 73(2): 66–72PubMedCrossRef
25.
go back to reference Armstrong JK, Veronese FM. The occurrence, induction, specificity and potential effect of antibodies against poly(ethylene glycol). In: Veronese FM, editor. Pegylated protein drugs: basic science and clinical applications. Basel: Springer, 2009: 147–68CrossRef Armstrong JK, Veronese FM. The occurrence, induction, specificity and potential effect of antibodies against poly(ethylene glycol). In: Veronese FM, editor. Pegylated protein drugs: basic science and clinical applications. Basel: Springer, 2009: 147–68CrossRef
26.
go back to reference Ichihara M, Shimizu T, Imoto A, et al. Anti-PEG IgM response against PEGylated liposomes in mice and rats. Pharmaceutics 2011 Dec; 3: 1–11CrossRef Ichihara M, Shimizu T, Imoto A, et al. Anti-PEG IgM response against PEGylated liposomes in mice and rats. Pharmaceutics 2011 Dec; 3: 1–11CrossRef
27.
go back to reference Ishida T, Ichihara M, Wang X, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 2006 May; 112(1): 15–25PubMedCrossRef Ishida T, Ichihara M, Wang X, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 2006 May; 112(1): 15–25PubMedCrossRef
28.
go back to reference Wang XY, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 2007 Jun; 119(2): 236–44PubMedCrossRef Wang XY, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 2007 Jun; 119(2): 236–44PubMedCrossRef
29.
go back to reference Su YC, Chen BM, Chuang KH, et al. Sensitive quantification of PEGylated compounds by second generation anti-poly(ethylene glycol) monoclonal antibodies. Bioconjug Chem 2010 Jul; 21(7): 1264–70PubMedCrossRef Su YC, Chen BM, Chuang KH, et al. Sensitive quantification of PEGylated compounds by second generation anti-poly(ethylene glycol) monoclonal antibodies. Bioconjug Chem 2010 Jul; 21(7): 1264–70PubMedCrossRef
30.
go back to reference Liu Y, Reidler H, Pan J, et al. A double antigen bridging immunogenicity ELISA for the detection of antibodies to polyethylene glycol polymers. J Pharmacol Toxicol Methods 2011 Nov–Dec; 64(3): 238–45PubMedCrossRef Liu Y, Reidler H, Pan J, et al. A double antigen bridging immunogenicity ELISA for the detection of antibodies to polyethylene glycol polymers. J Pharmacol Toxicol Methods 2011 Nov–Dec; 64(3): 238–45PubMedCrossRef
31.
go back to reference Schumacher FF, Nobles M, Ryan CP, et al. In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjug Chem 2011 Jan; 22(2): 132–6PubMedCrossRef Schumacher FF, Nobles M, Ryan CP, et al. In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjug Chem 2011 Jan; 22(2): 132–6PubMedCrossRef
32.
go back to reference Shaunak S, Godwin A, Choi JW, et al. Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat Chem Biol 2006 Jun; 2(6): 312–3PubMedCrossRef Shaunak S, Godwin A, Choi JW, et al. Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat Chem Biol 2006 Jun; 2(6): 312–3PubMedCrossRef
33.
go back to reference Brocchini S, Godwin A, Balan S, et al. Disulfide bridge based PEGylation of proteins. Adv Drug Deliv Rev 2008 Jan; 60(1): 3–12PubMedCrossRef Brocchini S, Godwin A, Balan S, et al. Disulfide bridge based PEGylation of proteins. Adv Drug Deliv Rev 2008 Jan; 60(1): 3–12PubMedCrossRef
34.
go back to reference Lee H, Jang IH, Ryu SH, et al. N-terminal site-specific mono-PEGylation of epidermal growth factor. Pharm Res 2003 May; 20(5): 818–25PubMedCrossRef Lee H, Jang IH, Ryu SH, et al. N-terminal site-specific mono-PEGylation of epidermal growth factor. Pharm Res 2003 May; 20(5): 818–25PubMedCrossRef
35.
go back to reference Hu J, Sebald W. N-terminal specificity of PEGylation of human bone morphogenetic protein-2 at acidic pH. Int J Pharm 2011 Jul; 413(1–2): 140–6PubMedCrossRef Hu J, Sebald W. N-terminal specificity of PEGylation of human bone morphogenetic protein-2 at acidic pH. Int J Pharm 2011 Jul; 413(1–2): 140–6PubMedCrossRef
36.
go back to reference Rosendahl MS, Doherty DH, Smith DJ, et al. A long-acting, highly potent interferon alpha-2 conjugate created using site-specific pegylation. Bioconjug Chem 2005 Jan; 16(1): 200–7PubMedCrossRef Rosendahl MS, Doherty DH, Smith DJ, et al. A long-acting, highly potent interferon alpha-2 conjugate created using site-specific pegylation. Bioconjug Chem 2005 Jan; 16(1): 200–7PubMedCrossRef
37.
go back to reference Gao M, Tian H, Ma C, et al. Expression, purification, and C-terminal sitespecific PEGylation of cysteine-mutated glucagon-like peptide-1. Appl Biochem Biotechnol 2010 Sep; 162(1): 155–65PubMedCrossRef Gao M, Tian H, Ma C, et al. Expression, purification, and C-terminal sitespecific PEGylation of cysteine-mutated glucagon-like peptide-1. Appl Biochem Biotechnol 2010 Sep; 162(1): 155–65PubMedCrossRef
38.
go back to reference Thom J, Anderson D, McGregor J, et al. Recombinant protein hydrazides: application to site-specific protein PEGylation. Bioconjug Chem 2011 May; 22(6): 1017–20PubMedCrossRef Thom J, Anderson D, McGregor J, et al. Recombinant protein hydrazides: application to site-specific protein PEGylation. Bioconjug Chem 2011 May; 22(6): 1017–20PubMedCrossRef
39.
go back to reference Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. Chem Biol 2009 Mar; 16(3): 323–36PubMedCrossRef Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. Chem Biol 2009 Mar; 16(3): 323–36PubMedCrossRef
40.
go back to reference Neumann H, Wang K, Davis L, et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010 Mar; 464(7287): 441–4PubMedCrossRef Neumann H, Wang K, Davis L, et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010 Mar; 464(7287): 441–4PubMedCrossRef
41.
go back to reference Voloshchuk N, Montclare JK. Incorporation of unnatural amino acids for synthetic biology. Mol Biosyst 2010 Jan; 6(1): 65–80PubMedCrossRef Voloshchuk N, Montclare JK. Incorporation of unnatural amino acids for synthetic biology. Mol Biosyst 2010 Jan; 6(1): 65–80PubMedCrossRef
42.
go back to reference Fang Z, Liu Y, Liu J, et al. Designing and engineering of a site-specific incorporation of a keto group in uricase. Chem Biol Drug Des 2011 Sep; 78(3): 353–60PubMedCrossRef Fang Z, Liu Y, Liu J, et al. Designing and engineering of a site-specific incorporation of a keto group in uricase. Chem Biol Drug Des 2011 Sep; 78(3): 353–60PubMedCrossRef
43.
go back to reference Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs 2010 Feb; 24(1): 1–8PubMedCrossRef Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs 2010 Feb; 24(1): 1–8PubMedCrossRef
44.
go back to reference Terziyska N, Grumbt B, Kozany C, et al. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. J Biol Chem 2009 Jan; 284(3): 1353–63PubMedCrossRef Terziyska N, Grumbt B, Kozany C, et al. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. J Biol Chem 2009 Jan; 284(3): 1353–63PubMedCrossRef
45.
go back to reference Wu X, Li X, Zeng Y, et al. Site-directed PEGylation of human basic fibroblast growth factor. Protein Expr Purif 2006 Jul; 48(1): 24–7PubMedCrossRef Wu X, Li X, Zeng Y, et al. Site-directed PEGylation of human basic fibroblast growth factor. Protein Expr Purif 2006 Jul; 48(1): 24–7PubMedCrossRef
46.
go back to reference Yoshioka Y, Watanabe H, Morishige T, et al. Creation of lysine-deficient mutant lymphotoxin-α with receptor selectivity by using a phage display system. Biomaterials 2010 Mar; 31(7): 1935–43PubMedCrossRef Yoshioka Y, Watanabe H, Morishige T, et al. Creation of lysine-deficient mutant lymphotoxin-α with receptor selectivity by using a phage display system. Biomaterials 2010 Mar; 31(7): 1935–43PubMedCrossRef
47.
go back to reference Narimatsu S, Yoshioka Y, Watanabe H, et al. Lysine-deficient lymphotoxinalpha mutant for site-specific PEGylation. Cytokine 2011 Nov; 56(2): 489–93PubMedCrossRef Narimatsu S, Yoshioka Y, Watanabe H, et al. Lysine-deficient lymphotoxinalpha mutant for site-specific PEGylation. Cytokine 2011 Nov; 56(2): 489–93PubMedCrossRef
48.
go back to reference Morishige T, Yoshioka Y, Inakura H, et al. Creation of a lysine-deficient LIGHT mutant with the capacity for site-specific PEGylation and low affinity for a decoy receptor. Biochem Biophys Res Commun 2010 Mar; 393(4): 888–93PubMedCrossRef Morishige T, Yoshioka Y, Inakura H, et al. Creation of a lysine-deficient LIGHT mutant with the capacity for site-specific PEGylation and low affinity for a decoy receptor. Biochem Biophys Res Commun 2010 Mar; 393(4): 888–93PubMedCrossRef
49.
go back to reference Yamamoto Y, Tsutsumi Y, Yoshioka Y, et al. Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat Biotech 2003 May; 21(5): 546–52CrossRef Yamamoto Y, Tsutsumi Y, Yoshioka Y, et al. Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat Biotech 2003 May; 21(5): 546–52CrossRef
50.
go back to reference Basu A, Yang K, Wang ML, et al. Structure-function engineering of interferonbeta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 2006 May; 17(3): 618–30PubMedCrossRef Basu A, Yang K, Wang ML, et al. Structure-function engineering of interferonbeta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 2006 May; 17(3): 618–30PubMedCrossRef
51.
go back to reference Yoshioka Y, Tsunoda S, Tsutsumi Y. Development of a novel DDS for site-specific PEGylated proteins. Chem Cent J 2011 May; 5: 25PubMedCrossRef Yoshioka Y, Tsunoda S, Tsutsumi Y. Development of a novel DDS for site-specific PEGylated proteins. Chem Cent J 2011 May; 5: 25PubMedCrossRef
52.
go back to reference Yoshioka Y, Tsutsumi Y, Ikemizu S, et al. Optimal site-specific PEGylation of mutant TNF-alpha improves its antitumor potency. Biochem Biophys Res Commun 2004 Mar; 315(4): 808–14PubMedCrossRef Yoshioka Y, Tsutsumi Y, Ikemizu S, et al. Optimal site-specific PEGylation of mutant TNF-alpha improves its antitumor potency. Biochem Biophys Res Commun 2004 Mar; 315(4): 808–14PubMedCrossRef
53.
go back to reference Keefe AJ, Jiang S. Poly(zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 2011 Dec; 4(1): 59–63PubMedCrossRef Keefe AJ, Jiang S. Poly(zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 2011 Dec; 4(1): 59–63PubMedCrossRef
54.
go back to reference Schiavon O, Caliceti P, Ferruti P, et al. Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine). Farmaco 2000 Apr; 55(4): 264–9PubMedCrossRef Schiavon O, Caliceti P, Ferruti P, et al. Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine). Farmaco 2000 Apr; 55(4): 264–9PubMedCrossRef
55.
go back to reference Schiavon O, Pasut G, Moro S, et al. PEG-Ara-C conjugates for controlled release. Eur J Med Chem 2004 Feb; 39(2): 123–33PubMedCrossRef Schiavon O, Pasut G, Moro S, et al. PEG-Ara-C conjugates for controlled release. Eur J Med Chem 2004 Feb; 39(2): 123–33PubMedCrossRef
56.
go back to reference Nojima Y, Suzuki Y, Yoshida K, et al. Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating half-life. Pharm Res 2009 Sep; 26(9): 2125–32PubMedCrossRef Nojima Y, Suzuki Y, Yoshida K, et al. Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating half-life. Pharm Res 2009 Sep; 26(9): 2125–32PubMedCrossRef
57.
go back to reference Li X, Lei J, Su Z, et al. Comparison of bioactivities of monopegylated rhG-CSF with branched and linear mPEG. Proc Biochem 2007 Sep; 42(12): 1625–31CrossRef Li X, Lei J, Su Z, et al. Comparison of bioactivities of monopegylated rhG-CSF with branched and linear mPEG. Proc Biochem 2007 Sep; 42(12): 1625–31CrossRef
58.
go back to reference Bersani C, Berna M, Pasut G, et al. PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. Farmaco 2005 Sep; 60(9): 783–8PubMedCrossRef Bersani C, Berna M, Pasut G, et al. PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. Farmaco 2005 Sep; 60(9): 783–8PubMedCrossRef
59.
go back to reference Monfardini C, Schiavon O, Caliceti P, et al. A branched monomethoxypoly (ethylene glycol) for protein modification. Bioconjug Chem 1995 Jan–Feb; 6(1): 62–9PubMedCrossRef Monfardini C, Schiavon O, Caliceti P, et al. A branched monomethoxypoly (ethylene glycol) for protein modification. Bioconjug Chem 1995 Jan–Feb; 6(1): 62–9PubMedCrossRef
60.
go back to reference Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: An overview. Adv Drug Deliv Rev 2009 Nov; 61(13): 1177–88PubMedCrossRef Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: An overview. Adv Drug Deliv Rev 2009 Nov; 61(13): 1177–88PubMedCrossRef
Metadata
Title
Site-Specific PEGylation of Therapeutic Proteins via Optimization of Both Accessible Reactive Amino Acid Residues and PEG Derivatives
Authors
Chun Zhang
Xiao-lan Yang
Yong-hua Yuan
Jun Pu
Professor Fei Liao
Publication date
01-08-2012
Publisher
Springer International Publishing
Published in
BioDrugs / Issue 4/2012
Print ISSN: 1173-8804
Electronic ISSN: 1179-190X
DOI
https://doi.org/10.1007/BF03261880

Other articles of this Issue 4/2012

BioDrugs 4/2012 Go to the issue