Skip to main content
Top
Published in: Endocrine 2/2016

01-08-2016 | Original Article

SIRT1 prevents hyperuricemia via the PGC-1α/PPARγ-ABCG2 pathway

Authors: Juan Wang, Xiao-Xia Zhu, Lei Liu, Yu Xue, Xue Yang, He-Jian Zou

Published in: Endocrine | Issue 2/2016

Login to get access

Abstract

Silent information regulator T1 (SIRT1) plays several key roles in the regulation of lipid and glucose homoeostasis. In this study, we investigated the potential role of SIRT1 in hyperuricemia and explored possible mechanisms. Significant hyperuricemia was detected in C57BL/6 mice treated with oxonate and yeast polysaccharide. Resveratrol (RSV), a specific SIRT1 activator, was administered to the mice. SIRT1 suppressed the increased serum uric acid level but up-regulated the expression of urate transporter ATP-binding cassette subfamily G member 2 (ABCG2) in the ileum of hyperuricemic mice. In a human colon carcinoma cell line, SIRT1 promoted ABCG2 production through the deacetylation of peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α), which then activated the effectors of PPARγ. Interestingly, the SIRT1-induced up-regulation of ABCG2 was significantly inhibited when PGC-1α or PPARγ was blocked by siRNA transfection. Our data demonstrated that SIRT1 and its activator, RSV, have clear anti-hyperuricemia functions in this mouse model. One possible mechanism is the activation of ABCG2 in the ileum through the PGC-1α/PPARγ pathway.
Literature
4.
go back to reference H. Chen, S. Zheng, Y. Wang, H. Zhu, Q. Liu, Y. Xue, J. Qiu, H. Zou, X. Zhu, The effect of resveratrol on the recurrent attacks of gouty arthritis. Clin Rheumatol, 1–7 (2014). doi:10.1007/s10067-014-2826-5 H. Chen, S. Zheng, Y. Wang, H. Zhu, Q. Liu, Y. Xue, J. Qiu, H. Zou, X. Zhu, The effect of resveratrol on the recurrent attacks of gouty arthritis. Clin Rheumatol, 1–7 (2014). doi:10.​1007/​s10067-014-2826-5
5.
go back to reference F. Preitner, O. Bonny, A. Laverriere, S. Rotman, D. Firsov, A. Da Costa, S. Metref, B. Thorens, Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc. Natl. Acad. Sci. USA 106(36), 15501–15506 (2009). doi:10.1073/pnas.0904411106 CrossRefPubMedPubMedCentral F. Preitner, O. Bonny, A. Laverriere, S. Rotman, D. Firsov, A. Da Costa, S. Metref, B. Thorens, Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc. Natl. Acad. Sci. USA 106(36), 15501–15506 (2009). doi:10.​1073/​pnas.​0904411106 CrossRefPubMedPubMedCentral
7.
go back to reference A. Nakayama, H. Matsuo, T. Takada, K. Ichida, T. Nakamura, Y. Ikebuchi, K. Ito, T. Hosoya, Y. Kanai, H. Suzuki, N. Shinomiya, ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides, Nucleotides Nucleic Acids 30(12), 1091–1097 (2011). doi:10.1080/15257770.2011.633953 CrossRefPubMed A. Nakayama, H. Matsuo, T. Takada, K. Ichida, T. Nakamura, Y. Ikebuchi, K. Ito, T. Hosoya, Y. Kanai, H. Suzuki, N. Shinomiya, ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides, Nucleotides Nucleic Acids 30(12), 1091–1097 (2011). doi:10.​1080/​15257770.​2011.​633953 CrossRefPubMed
13.
go back to reference I. Szatmari, G. Vamosi, P. Brazda, B.L. Balint, S. Benko, L. Szeles, V. Jeney, C. Ozvegy-Laczka, A. Szanto, E. Barta, J. Balla, B. Sarkadi, L. Nagy, Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J. Biol. Chem. 281(33), 23812–23823 (2006). doi:10.1074/jbc.M604890200 CrossRefPubMed I. Szatmari, G. Vamosi, P. Brazda, B.L. Balint, S. Benko, L. Szeles, V. Jeney, C. Ozvegy-Laczka, A. Szanto, E. Barta, J. Balla, B. Sarkadi, L. Nagy, Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J. Biol. Chem. 281(33), 23812–23823 (2006). doi:10.​1074/​jbc.​M604890200 CrossRefPubMed
14.
go back to reference M.Y. Kim, J.H. Lim, H.H. Youn, Y.A. Hong, K.S. Yang, H.S. Park, S. Chung, S.H. Ko, S.J. Shin, B.S. Choi, H.W. Kim, Y.S. Kim, J.H. Lee, Y.S. Chang, C.W. Park, Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia 56(1), 204–217 (2013). doi:10.1007/s00125-012-2747-2 CrossRefPubMed M.Y. Kim, J.H. Lim, H.H. Youn, Y.A. Hong, K.S. Yang, H.S. Park, S. Chung, S.H. Ko, S.J. Shin, B.S. Choi, H.W. Kim, Y.S. Kim, J.H. Lee, Y.S. Chang, C.W. Park, Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia 56(1), 204–217 (2013). doi:10.​1007/​s00125-012-2747-2 CrossRefPubMed
15.
go back to reference R.B. Vega, J.M. Huss, D.P. Kelly, The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20(5), 1868–1876 (2000)CrossRefPubMedPubMedCentral R.B. Vega, J.M. Huss, D.P. Kelly, The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20(5), 1868–1876 (2000)CrossRefPubMedPubMedCentral
16.
go back to reference Y.X. Wang, C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, R.M. Evans, Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2), 159–170 (2003)CrossRefPubMed Y.X. Wang, C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, R.M. Evans, Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2), 159–170 (2003)CrossRefPubMed
18.
go back to reference W.A. Xu, L. Yin, H.Y. Pan, L. Shi, L. Xu, X. Zhang, J.A. Duan, Study on the correlation between constituents detected in serum from Rhizoma Smilacis Glabrae and the reduction of uric acid levels in hyperuricemia. J. Ethnopharmacol. 150(2), 747–754 (2013). doi:10.1016/j.jep.2013.09.024 CrossRefPubMed W.A. Xu, L. Yin, H.Y. Pan, L. Shi, L. Xu, X. Zhang, J.A. Duan, Study on the correlation between constituents detected in serum from Rhizoma Smilacis Glabrae and the reduction of uric acid levels in hyperuricemia. J. Ethnopharmacol. 150(2), 747–754 (2013). doi:10.​1016/​j.​jep.​2013.​09.​024 CrossRefPubMed
19.
go back to reference X.W. Wu, D.M. Muzny, C.C. Lee, C.T. Caskey, Two independent mutational events in the loss of urate oxidase during hominoid evolution. J. Mol. Evol. 34(1), 78–84 (1992)CrossRefPubMed X.W. Wu, D.M. Muzny, C.C. Lee, C.T. Caskey, Two independent mutational events in the loss of urate oxidase during hominoid evolution. J. Mol. Evol. 34(1), 78–84 (1992)CrossRefPubMed
20.
go back to reference J.S. Bomalaski, M.A. Clark, Serum uric acid-lowering therapies: where are we heading in management of hyperuricemia and the potential role of uricase. Curr. Rheumatol. Rep. 6(3), 240–247 (2004)CrossRefPubMed J.S. Bomalaski, M.A. Clark, Serum uric acid-lowering therapies: where are we heading in management of hyperuricemia and the potential role of uricase. Curr. Rheumatol. Rep. 6(3), 240–247 (2004)CrossRefPubMed
21.
go back to reference J. Ogura, K. Kuwayama, S. Sasaki, C. Kaneko, T. Koizumi, K. Yabe, T. Tsujimoto, R. Takeno, A. Takaya, M. Kobayashi, H. Yamaguchi, K. Iseki, Reactive oxygen species derived from xanthine oxidase interrupt dimerization of breast cancer resistance protein, resulting in suppression of uric acid excretion to the intestinal lumen. Biochem. Pharmacol. 97(1), 89–98 (2015). doi:10.1016/j.bcp.2015.06.021 CrossRefPubMed J. Ogura, K. Kuwayama, S. Sasaki, C. Kaneko, T. Koizumi, K. Yabe, T. Tsujimoto, R. Takeno, A. Takaya, M. Kobayashi, H. Yamaguchi, K. Iseki, Reactive oxygen species derived from xanthine oxidase interrupt dimerization of breast cancer resistance protein, resulting in suppression of uric acid excretion to the intestinal lumen. Biochem. Pharmacol. 97(1), 89–98 (2015). doi:10.​1016/​j.​bcp.​2015.​06.​021 CrossRefPubMed
22.
go back to reference K. Ichida, H. Matsuo, T. Takada, A. Nakayama, K. Murakami, T. Shimizu, Y. Yamanashi, H. Kasuga, H. Nakashima, T. Nakamura, Y. Takada, Y. Kawamura, H. Inoue, C. Okada, Y. Utsumi, Y. Ikebuchi, K. Ito, M. Nakamura, Y. Shinohara, M. Hosoyamada, Y. Sakurai, N. Shinomiya, T. Hosoya, H. Suzuki, Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 3, 764 (2012). doi:10.1038/Ncomms1756 CrossRefPubMedPubMedCentral K. Ichida, H. Matsuo, T. Takada, A. Nakayama, K. Murakami, T. Shimizu, Y. Yamanashi, H. Kasuga, H. Nakashima, T. Nakamura, Y. Takada, Y. Kawamura, H. Inoue, C. Okada, Y. Utsumi, Y. Ikebuchi, K. Ito, M. Nakamura, Y. Shinohara, M. Hosoyamada, Y. Sakurai, N. Shinomiya, T. Hosoya, H. Suzuki, Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 3, 764 (2012). doi:10.​1038/​Ncomms1756 CrossRefPubMedPubMedCentral
23.
go back to reference Y. Lu, T. Nakanishi, A. Hosomi, H. Komori, I. Tamai, In-vitro evidence of enhanced breast cancer resistance protein-mediated intestinal urate secretion by uremic toxins in Caco-2 cells. J. Pharm. Pharmacol. 67(2), 170–177 (2015). doi:10.1111/jphp.12328 CrossRefPubMed Y. Lu, T. Nakanishi, A. Hosomi, H. Komori, I. Tamai, In-vitro evidence of enhanced breast cancer resistance protein-mediated intestinal urate secretion by uremic toxins in Caco-2 cells. J. Pharm. Pharmacol. 67(2), 170–177 (2015). doi:10.​1111/​jphp.​12328 CrossRefPubMed
27.
28.
go back to reference J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117), 337–342 (2006). doi:10.1038/nature05354 CrossRefPubMed J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117), 337–342 (2006). doi:10.​1038/​nature05354 CrossRefPubMed
29.
go back to reference J.M. Huss, R.P. Kopp, D.P. Kelly, Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J. Biol. Chem. 277(43), 40265–40274 (2002). doi:10.1074/jbc.M206324200 CrossRefPubMed J.M. Huss, R.P. Kopp, D.P. Kelly, Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J. Biol. Chem. 277(43), 40265–40274 (2002). doi:10.​1074/​jbc.​M206324200 CrossRefPubMed
30.
go back to reference S.N. Schreiber, D. Knutti, K. Brogli, T. Uhlmann, A. Kralli, The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J. Biol. Chem. 278(11), 9013–9018 (2003). doi:10.1074/jbc.M212923200 CrossRefPubMed S.N. Schreiber, D. Knutti, K. Brogli, T. Uhlmann, A. Kralli, The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J. Biol. Chem. 278(11), 9013–9018 (2003). doi:10.​1074/​jbc.​M212923200 CrossRefPubMed
31.
go back to reference K. Schoonjans, B. Staels, J. Auwerx, Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37(5), 907–925 (1996)PubMed K. Schoonjans, B. Staels, J. Auwerx, Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37(5), 907–925 (1996)PubMed
32.
go back to reference S. Hayashida, A. Arimoto, Y. Kuramoto, T. Kozako, S. Honda, H. Shimeno, S. Soeda, Fasting promotes the expression of SIRT1, an NAD + -dependent protein deacetylase, via activation of PPARalpha in mice. Mol. Cell. Biochem. 339(1–2), 285–292 (2010). doi:10.1007/s11010-010-0391-z CrossRefPubMed S. Hayashida, A. Arimoto, Y. Kuramoto, T. Kozako, S. Honda, H. Shimeno, S. Soeda, Fasting promotes the expression of SIRT1, an NAD + -dependent protein deacetylase, via activation of PPARalpha in mice. Mol. Cell. Biochem. 339(1–2), 285–292 (2010). doi:10.​1007/​s11010-010-0391-z CrossRefPubMed
33.
go back to reference M. Okazaki, Y. Iwasaki, M. Nishiyama, T. Taguchi, M. Tsugita, S. Nakayama, M. Kambayashi, K. Hashimoto, Y. Terada, PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 57(5), 403–413 (2010)CrossRefPubMed M. Okazaki, Y. Iwasaki, M. Nishiyama, T. Taguchi, M. Tsugita, S. Nakayama, M. Kambayashi, K. Hashimoto, Y. Terada, PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 57(5), 403–413 (2010)CrossRefPubMed
35.
go back to reference Q.P. Wang, Y. Wang, X.D. Wang, X.M. Mo, J. Gu, Z.Y. Lu, Z.L. Pan, Y.X. Zhu, Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-kappaB expression in MCF-7/5-FU cells. Int. J. Biochem. Cell Biol. 45(9), 2036–2044 (2013). doi:10.1016/j.biocel.2013.06.026 CrossRefPubMed Q.P. Wang, Y. Wang, X.D. Wang, X.M. Mo, J. Gu, Z.Y. Lu, Z.L. Pan, Y.X. Zhu, Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-kappaB expression in MCF-7/5-FU cells. Int. J. Biochem. Cell Biol. 45(9), 2036–2044 (2013). doi:10.​1016/​j.​biocel.​2013.​06.​026 CrossRefPubMed
36.
go back to reference M. Pradhan, L.A. Bembinster, S.C. Baumgarten, J. Frasor, Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements. J. Biol. Chem. 285(41), 31100–31106 (2010). doi:10.1074/jbc.M110.155309 CrossRefPubMedPubMedCentral M. Pradhan, L.A. Bembinster, S.C. Baumgarten, J. Frasor, Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements. J. Biol. Chem. 285(41), 31100–31106 (2010). doi:10.​1074/​jbc.​M110.​155309 CrossRefPubMedPubMedCentral
Metadata
Title
SIRT1 prevents hyperuricemia via the PGC-1α/PPARγ-ABCG2 pathway
Authors
Juan Wang
Xiao-Xia Zhu
Lei Liu
Yu Xue
Xue Yang
He-Jian Zou
Publication date
01-08-2016
Publisher
Springer US
Published in
Endocrine / Issue 2/2016
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-016-0896-7

Other articles of this Issue 2/2016

Endocrine 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine