Skip to main content
Top
Published in: Clinical Pharmacokinetics 11/2006

01-11-2006 | Original Research Article

Sirolimus Population Pharmacokinetic/Pharmacogenetic Analysis and Bayesian Modelling in Kidney Transplant Recipients

Authors: Nassim Djebli, Dr Annick Rousseau, Guillaume Hoizey, Jean-Philippe Rerolle, Olivier Toupance, Yann Le Meur, Pierre Marquet

Published in: Clinical Pharmacokinetics | Issue 11/2006

Login to get access

Abstract

Objectives: The objectives of the present study were: (i) to analyse the population pharmacokinetics of sirolimus in renal transplant recipients co-administered mycophenolate mofetil, but no calcineurin inhibitor over the first 3 months post-transplantation and study the influence of different potential covariates, including genetic polymorphisms of cytochrome P450 (CYP) metabolic enzymes and active transporters, on pharmacokinetic parameters; and (ii) to develop a Bayesian estimator able to reliably estimate the individual pharmacokinetic parameters and exposure indices in this population.
Methods: Twenty-two adult renal transplant patients treated with sirolimus participated in this study. Ninety concentration-time profiles (938 sirolimus whole blood samples) were collected at days 7 and 14, and months 1 and 3 post-transplantation. The population pharmacokinetic study was conducted using the nonlinear mixed effects model software, NONMEM, and validated using both the bootstrap and the cross-validation approaches. Finally, a Bayesian estimator based on a limited sampling strategy was built using the post hoc option.
Results: A two-compartment open model with first-order elimination and Erlang’s distribution (to describe the absorption phase) best fitted the data. The mean pharmacokinetic parameter estimates were 5.25 h′1, 218L and 292L for the transfer rate constant, the apparent volume of the central and peripheral compartments, respectively. The CYP3A5*1/*3 polymorphism significantly influenced the apparent oral clearance: mean oral clearance = 14.1 L/h for CYP3A5 non expressers (CYP3A5*3/*3 genotype) versus 28.3 L/h for CYP3A5 expressers (CYP3A5 *l/*3 and *1/*1 genotypes). The standard errors of all the parameter estimates were <15%. Maximum a posteriori Bayesian forecasting allowed accurate prediction of sirolimus area under the concentration-time curve from 0 to 24 hours using a combination of only three sampling times (0, 1 and 3 hours post-dose), with a non-significant bias of−2.1% (range −22.2% to +25.9%), and a good precision (root mean square error = 10.3%). This combination is also easy to implement in clinical practice.
Conclusion: This study presents an accurate population pharmacokinetic model showing the significant influence of the CYP3A5*1/*3 polymorphism on sirolimus apparent oral clearance, and a Bayesian estimator accurately predicting sirolimus pharmacokinetics in patients co-administered mycophenolate mofetil, but no calcineurin inhibitor.
Footnotes
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literature
1.
go back to reference Sehgal SN. Sirolimus: a new immunosuppressive agent: a historical perspective and immunosuppressive profile. In: Lieberman R, Mukherjee A, editors. Principles of drug development in transplantation and autoimmunity. Austin (TX): RG Landes, 1996: 271–82 Sehgal SN. Sirolimus: a new immunosuppressive agent: a historical perspective and immunosuppressive profile. In: Lieberman R, Mukherjee A, editors. Principles of drug development in transplantation and autoimmunity. Austin (TX): RG Landes, 1996: 271–82
2.
go back to reference Brattstrom C, Wilczek H, Tyden G. Hyperlipidemia in renal transplant recipients treated with sirolimus (rapamycin). Tranplantation 1998; 65: 1272–4CrossRef Brattstrom C, Wilczek H, Tyden G. Hyperlipidemia in renal transplant recipients treated with sirolimus (rapamycin). Tranplantation 1998; 65: 1272–4CrossRef
3.
go back to reference Hong JC, Kahan BD. Sirolimus-induced thrombocytopenia and leucopenia in renal transplant recipients: risk factors, incidence, progression and management. Transplantation 2000; 69: 2085–90PubMedCrossRef Hong JC, Kahan BD. Sirolimus-induced thrombocytopenia and leucopenia in renal transplant recipients: risk factors, incidence, progression and management. Transplantation 2000; 69: 2085–90PubMedCrossRef
4.
go back to reference MacDonald A, Scarola J, Burke JT, et al. Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin Ther 2000; 22 Suppl. B: B101–21PubMedCrossRef MacDonald A, Scarola J, Burke JT, et al. Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin Ther 2000; 22 Suppl. B: B101–21PubMedCrossRef
5.
go back to reference Kahan BD, Napoli KL, Podbielski J, et al. Therapeutic drug monitoring of sirolimus for optimal renal transplant outcomes. Transplant Proc 2001 Feb-Mar; 33(1–2): 1278PubMedCrossRef Kahan BD, Napoli KL, Podbielski J, et al. Therapeutic drug monitoring of sirolimus for optimal renal transplant outcomes. Transplant Proc 2001 Feb-Mar; 33(1–2): 1278PubMedCrossRef
6.
go back to reference Kahan BD, Keown P, Levy GA, et al. Therapeutic drag monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002 Mar; 24(3): 330–50PubMedCrossRef Kahan BD, Keown P, Levy GA, et al. Therapeutic drag monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002 Mar; 24(3): 330–50PubMedCrossRef
7.
go back to reference Ferron GM, Mishina EV, Zimmerman JJ, et al. Population pharmacoknetics of sirolimus in kidney transplant patients. Clin Pharmacol Ther 1997; 61: 416–28PubMedCrossRef Ferron GM, Mishina EV, Zimmerman JJ, et al. Population pharmacoknetics of sirolimus in kidney transplant patients. Clin Pharmacol Ther 1997; 61: 416–28PubMedCrossRef
8.
go back to reference Zimmerman JJ, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37(5): 405–15PubMed Zimmerman JJ, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37(5): 405–15PubMed
9.
go back to reference Napoli KL, Wang ME, Stepkowski SM, et al. Distribution of sirolimus in rat tissue. Clin Biochem 1997 Mar; 30(2): 135–42PubMedCrossRef Napoli KL, Wang ME, Stepkowski SM, et al. Distribution of sirolimus in rat tissue. Clin Biochem 1997 Mar; 30(2): 135–42PubMedCrossRef
10.
go back to reference Meier-Kriesche HU, Kaplan B. Toxicity and efficacy of sirolimus: relationship to whole-blood concentrations. Clin Ther 2000; 22 Suppl. B: B93–B100PubMedCrossRef Meier-Kriesche HU, Kaplan B. Toxicity and efficacy of sirolimus: relationship to whole-blood concentrations. Clin Ther 2000; 22 Suppl. B: B93–B100PubMedCrossRef
11.
go back to reference Kahan BD, Napoli KL, Kelly PA, et al. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin Transplant 2000 Apr; 14(2): 97–109PubMedCrossRef Kahan BD, Napoli KL, Kelly PA, et al. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin Transplant 2000 Apr; 14(2): 97–109PubMedCrossRef
12.
go back to reference Kahan BD. Rapamycin: personal algorithms for use based on 250 treated renal allograft recipients. Transplant Proc 1998; 30: 2185–8PubMedCrossRef Kahan BD. Rapamycin: personal algorithms for use based on 250 treated renal allograft recipients. Transplant Proc 1998; 30: 2185–8PubMedCrossRef
13.
go back to reference Trepanier DJ, Gallant H, Legatt DF, et al. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem 1998; 31(5): 345–51PubMedCrossRef Trepanier DJ, Gallant H, Legatt DF, et al. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem 1998; 31(5): 345–51PubMedCrossRef
14.
go back to reference Schubert M, Venkataramanan R, Holt DW, et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. Am J Transplant 2004; 4: 767–73PubMedCrossRef Schubert M, Venkataramanan R, Holt DW, et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. Am J Transplant 2004; 4: 767–73PubMedCrossRef
15.
go back to reference Kaplan B, Meier-Kriesche HU, Napoli K, et al. A limited sampling strategy for estimating sirolimus area-under-the-concentration curve. Clin Chem 1997; 43: 539–40PubMed Kaplan B, Meier-Kriesche HU, Napoli K, et al. A limited sampling strategy for estimating sirolimus area-under-the-concentration curve. Clin Chem 1997; 43: 539–40PubMed
16.
go back to reference Anglicheau D, Le Corre D, Lechaton S, et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 2005; 5(3): 595–603PubMedCrossRef Anglicheau D, Le Corre D, Lechaton S, et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 2005; 5(3): 595–603PubMedCrossRef
17.
go back to reference Holt DW, Lee T, Jones K, et al. Validation of an assay for routine monitoring of sirolimus using HPLC with mass spectrometric detection. Clin Chem 2000; 46: 1179–83PubMed Holt DW, Lee T, Jones K, et al. Validation of an assay for routine monitoring of sirolimus using HPLC with mass spectrometric detection. Clin Chem 2000; 46: 1179–83PubMed
18.
go back to reference Boekmann AJ, Sheiner LB, Beal SL. NONMEM user’s guide, part V: introductory guide. Technical report of the division of clinical pharmacology, University of California. San Francisco: University of California, 1992 Boekmann AJ, Sheiner LB, Beal SL. NONMEM user’s guide, part V: introductory guide. Technical report of the division of clinical pharmacology, University of California. San Francisco: University of California, 1992
19.
go back to reference Gomeni R. Visual-NM user’s manual. Montpellier, France: Research Development Population Pharmacokinetics, 1998 Gomeni R. Visual-NM user’s manual. Montpellier, France: Research Development Population Pharmacokinetics, 1998
20.
go back to reference Rousseau A, Leger F, Le Meur Y, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a bayesian estimator. Ther Drag Monit 2004; 26(1): 23–30CrossRef Rousseau A, Leger F, Le Meur Y, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a bayesian estimator. Ther Drag Monit 2004; 26(1): 23–30CrossRef
21.
go back to reference Etienne MC, Chatelut E, Pivot X, et al. Co-variables influencing 5-fluorouracil clearance during continuous venous infusion: a NONMEM analysis. Eur J Cancer 1998 Jan; 34(1): 92–7PubMedCrossRef Etienne MC, Chatelut E, Pivot X, et al. Co-variables influencing 5-fluorouracil clearance during continuous venous infusion: a NONMEM analysis. Eur J Cancer 1998 Jan; 34(1): 92–7PubMedCrossRef
22.
go back to reference Efron B. Bootstrap methods: another look at the jacknife. Ann Stat 1979; 7: 1–26CrossRef Efron B. Bootstrap methods: another look at the jacknife. Ann Stat 1979; 7: 1–26CrossRef
24.
go back to reference Premaud A, Le Meur Y, Debord J, et al. Maximum a posteriori Bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drag Monit 2005; 27(3): 354–61CrossRef Premaud A, Le Meur Y, Debord J, et al. Maximum a posteriori Bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drag Monit 2005; 27(3): 354–61CrossRef
25.
go back to reference Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981 Aug; 9(4): 503–12PubMed Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981 Aug; 9(4): 503–12PubMed
27.
go back to reference Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm 1993; 21(6): 735–50PubMed Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm 1993; 21(6): 735–50PubMed
28.
go back to reference MacPhee IA, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74(11): 1486–9PubMedCrossRef MacPhee IA, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74(11): 1486–9PubMedCrossRef
29.
go back to reference Hesselink DA, Van Schaik RHN, Heiden VD, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74: 245–54PubMedCrossRef Hesselink DA, Van Schaik RHN, Heiden VD, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74: 245–54PubMedCrossRef
30.
go back to reference Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14: 147–54PubMedCrossRef Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14: 147–54PubMedCrossRef
31.
go back to reference MacPhee IAM, Fredericks S, Mohamed M, et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dosenormalized tacrolimus blood concentrations in whites and south Asians. Transplantation 2005; 79(4): 499–502PubMedCrossRef MacPhee IAM, Fredericks S, Mohamed M, et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dosenormalized tacrolimus blood concentrations in whites and south Asians. Transplantation 2005; 79(4): 499–502PubMedCrossRef
32.
go back to reference Zhao Y, Song M, Guan D, et al. Genetics polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant Proc 2005; 37: 178–81PubMedCrossRef Zhao Y, Song M, Guan D, et al. Genetics polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant Proc 2005; 37: 178–81PubMedCrossRef
33.
go back to reference Tsuchiya N, Satoh S, Tada H, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004; 78: 1182–7PubMedCrossRef Tsuchiya N, Satoh S, Tada H, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 2004; 78: 1182–7PubMedCrossRef
34.
go back to reference Zheng HX, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol 2004; 44: 1335–140 Zheng HX, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol 2004; 44: 1335–140
Metadata
Title
Sirolimus Population Pharmacokinetic/Pharmacogenetic Analysis and Bayesian Modelling in Kidney Transplant Recipients
Authors
Nassim Djebli
Dr Annick Rousseau
Guillaume Hoizey
Jean-Philippe Rerolle
Olivier Toupance
Yann Le Meur
Pierre Marquet
Publication date
01-11-2006
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 11/2006
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200645110-00007

Other articles of this Issue 11/2006

Clinical Pharmacokinetics 11/2006 Go to the issue