Skip to main content
Top
Published in: European Journal of Clinical Microbiology & Infectious Diseases 8/2008

01-08-2008 | Article

siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells

Authors: C.-Y. Lu, H.-Y. Huang, T.-H. Yang, L.-Y. Chang, C.-Y. Lee, L.-M. Huang

Published in: European Journal of Clinical Microbiology & Infectious Diseases | Issue 8/2008

Login to get access

Abstract

The outbreak of severe acute respiratory syndrome (SARS) in 2002–2003 has had a significant impact worldwide. No effective prophylaxis or treatment for SARS is available up to now. Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for SARS-associated coronavirus (SARS-CoV). By expressing a U6 promoter-driven small interfering RNA containing sequences homologous to part of ACE2 mRNA, we successfully silenced ACE2 expression in Vero E6 cells. By detecting negative strand SARS-CoV RNA and measuring RNA copy numbers of SARS-CoV by real-time reverse transcription polymerase chain reaction (RT-PCR), we demonstrated that SARS-CoV infection was reduced in the ACE2-silenced cell lines. These findings support the involvement of ACE2 in SARS-CoV infections and provide a basis for further studies on potential use of siRNA targeting ACE2 as a preventive or therapeutic strategy for SARS.
Literature
1.
go back to reference Groneberg DA, Poutanen SM, Low DE, Lode H, Welte T, Zabel P (2005) Treatment and vaccines for severe acute respiratory syndrome. Lancet Infect Dis 5:147–155PubMed Groneberg DA, Poutanen SM, Low DE, Lode H, Welte T, Zabel P (2005) Treatment and vaccines for severe acute respiratory syndrome. Lancet Infect Dis 5:147–155PubMed
2.
go back to reference Hsueh PR, Hsiao CH, Yeh SH et al (2003) Microbiologic characteristics, serologic responses, and clinical manifestations in severe acute respiratory syndrome, Taiwan. Emerg Infect Dis 9:1163–1167PubMed Hsueh PR, Hsiao CH, Yeh SH et al (2003) Microbiologic characteristics, serologic responses, and clinical manifestations in severe acute respiratory syndrome, Taiwan. Emerg Infect Dis 9:1163–1167PubMed
3.
go back to reference Gallagher TM, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374PubMedCrossRef Gallagher TM, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374PubMedCrossRef
4.
go back to reference Li W, Moore MJ, Vasilieva N et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454PubMedCrossRef Li W, Moore MJ, Vasilieva N et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454PubMedCrossRef
5.
go back to reference Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9PubMed Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9PubMed
6.
go back to reference Harmer D, Gilbert M, Borman R, Clark KL (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 532:107–110PubMedCrossRef Harmer D, Gilbert M, Borman R, Clark KL (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 532:107–110PubMedCrossRef
7.
go back to reference Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685PubMedCrossRef Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685PubMedCrossRef
8.
go back to reference Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRef Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRef
9.
go back to reference Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220PubMedCrossRef Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220PubMedCrossRef
10.
go back to reference Ksiazek TG, Erdman D, Goldsmith CS et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966PubMedCrossRef Ksiazek TG, Erdman D, Goldsmith CS et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966PubMedCrossRef
11.
go back to reference Drosten C, Gunther S, Preiser W et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976PubMedCrossRef Drosten C, Gunther S, Preiser W et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976PubMedCrossRef
12.
go back to reference Li T, Zhang Y, Fu L et al (2005) siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther 12:751–761PubMedCrossRef Li T, Zhang Y, Fu L et al (2005) siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther 12:751–761PubMedCrossRef
13.
go back to reference Qin ZL, Zhao P, Zhang XL et al (2004) Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem Biophys Res Commun 324:1186–1193PubMedCrossRef Qin ZL, Zhao P, Zhang XL et al (2004) Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem Biophys Res Commun 324:1186–1193PubMedCrossRef
14.
go back to reference Zhang Y, Li T, Fu L et al (2004) Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 560:141–146PubMedCrossRef Zhang Y, Li T, Fu L et al (2004) Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 560:141–146PubMedCrossRef
15.
go back to reference Shi Y, Yang DH, Xiong J, Jia J, Huang B, Jin YX (2005) Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res 15:193–200PubMedCrossRef Shi Y, Yang DH, Xiong J, Jia J, Huang B, Jin YX (2005) Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res 15:193–200PubMedCrossRef
16.
go back to reference Qin ZL, Zhao P, Cao MM, Qi ZT (2007) siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA. J Virol Methods 145:146–154PubMedCrossRef Qin ZL, Zhao P, Cao MM, Qi ZT (2007) siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA. J Virol Methods 145:146–154PubMedCrossRef
17.
go back to reference Wang Z, Ren L, Zhao X et al (2004) Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol 78:7523–7527PubMedCrossRef Wang Z, Ren L, Zhao X et al (2004) Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol 78:7523–7527PubMedCrossRef
18.
go back to reference Ni B, Shi X, Li Y, Gao W, Wang X, Wu Y (2005) Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA. Antivir Ther 10:527–533PubMed Ni B, Shi X, Li Y, Gao W, Wang X, Wu Y (2005) Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA. Antivir Ther 10:527–533PubMed
19.
go back to reference Akerstrom S, Mirazimi A, Tan YJ (2007) Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res 73:219–227PubMedCrossRef Akerstrom S, Mirazimi A, Tan YJ (2007) Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res 73:219–227PubMedCrossRef
20.
go back to reference Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL (2005) Inhibition of SARS-CoV replication by siRNA. Antiviral Res 65:45–48PubMedCrossRef Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL (2005) Inhibition of SARS-CoV replication by siRNA. Antiviral Res 65:45–48PubMedCrossRef
21.
go back to reference Li BJ, Tang Q, Cheng D et al (2005) Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11:944–951PubMed Li BJ, Tang Q, Cheng D et al (2005) Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11:944–951PubMed
22.
go back to reference Wu CJ, Chan YL (2006) Antiviral applications of RNAi for coronavirus. Expert Opin Investig Drugs 15:89–97PubMedCrossRef Wu CJ, Chan YL (2006) Antiviral applications of RNAi for coronavirus. Expert Opin Investig Drugs 15:89–97PubMedCrossRef
23.
go back to reference Chang Z, Babiuk LA, Hu J (2007) Therapeutic and prophylactic potential of small interfering RNAs against severe acute respiratory syndrome: progress to date. BioDrugs 21:9–15PubMedCrossRef Chang Z, Babiuk LA, Hu J (2007) Therapeutic and prophylactic potential of small interfering RNAs against severe acute respiratory syndrome: progress to date. BioDrugs 21:9–15PubMedCrossRef
24.
go back to reference Anderson J, Akkina R (2005) CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2:53PubMedCrossRef Anderson J, Akkina R (2005) CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2:53PubMedCrossRef
25.
go back to reference Novina CD, Murray MF, Dykxhoorn DM et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686PubMed Novina CD, Murray MF, Dykxhoorn DM et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686PubMed
26.
go back to reference Hattermann K, Muller MA, Nitsche A, Wendt S, Donoso Mantke O, Niedrig M (2005) Susceptibility of different eukaryotic cell lines to SARS-coronavirus. Arch Virol 150:1023–1031PubMedCrossRef Hattermann K, Muller MA, Nitsche A, Wendt S, Donoso Mantke O, Niedrig M (2005) Susceptibility of different eukaryotic cell lines to SARS-coronavirus. Arch Virol 150:1023–1031PubMedCrossRef
27.
go back to reference Hofmann H, Geier M, Marzi A et al (2004) Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319:1216–1221PubMedCrossRef Hofmann H, Geier M, Marzi A et al (2004) Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319:1216–1221PubMedCrossRef
28.
go back to reference Nie Y, Wang P, Shi X et al (2004) Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem Biophys Res Commun 321:994–1000PubMedCrossRef Nie Y, Wang P, Shi X et al (2004) Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem Biophys Res Commun 321:994–1000PubMedCrossRef
29.
go back to reference Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB, Peters CJ (2005) Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 79:3846–3850PubMedCrossRef Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB, Peters CJ (2005) Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 79:3846–3850PubMedCrossRef
30.
go back to reference Jeffers SA, Tusell SM, Gillim-Ross L et al (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 101:15748–15753PubMedCrossRef Jeffers SA, Tusell SM, Gillim-Ross L et al (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 101:15748–15753PubMedCrossRef
31.
go back to reference He ML, Zheng BJ, Chen Y et al (2006) Kinetics and synergistic effects of siRNAs targeting structural and replicase genes of SARS-associated coronavirus. FEBS Lett 580:2414–2420PubMedCrossRef He ML, Zheng BJ, Chen Y et al (2006) Kinetics and synergistic effects of siRNAs targeting structural and replicase genes of SARS-associated coronavirus. FEBS Lett 580:2414–2420PubMedCrossRef
32.
go back to reference de Lang A, Osterhaus AD, Haagmans BL (2006) Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 353:474–481PubMedCrossRef de Lang A, Osterhaus AD, Haagmans BL (2006) Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 353:474–481PubMedCrossRef
33.
go back to reference Goulter AB, Goddard MJ, Allen JC, Clark KL (2004) ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2:19PubMedCrossRef Goulter AB, Goddard MJ, Allen JC, Clark KL (2004) ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2:19PubMedCrossRef
34.
go back to reference Crackower MA, Sarao R, Oudit GY et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828PubMedCrossRef Crackower MA, Sarao R, Oudit GY et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828PubMedCrossRef
Metadata
Title
siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells
Authors
C.-Y. Lu
H.-Y. Huang
T.-H. Yang
L.-Y. Chang
C.-Y. Lee
L.-M. Huang
Publication date
01-08-2008
Publisher
Springer-Verlag
Published in
European Journal of Clinical Microbiology & Infectious Diseases / Issue 8/2008
Print ISSN: 0934-9723
Electronic ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-008-0495-5

Other articles of this Issue 8/2008

European Journal of Clinical Microbiology & Infectious Diseases 8/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine