Skip to main content
Top
Published in: BMC Medicine 1/2017

Open Access 01-12-2017 | Opinion

Simulations for designing and interpreting intervention trials in infectious diseases

Authors: M. Elizabeth Halloran, Kari Auranen, Sarah Baird, Nicole E. Basta, Steven E. Bellan, Ron Brookmeyer, Ben S. Cooper, Victor DeGruttola, James P. Hughes, Justin Lessler, Eric T. Lofgren, Ira M. Longini, Jukka-Pekka Onnela, Berk Özler, George R. Seage, Thomas A. Smith, Alessandro Vespignani, Emilia Vynnycky, Marc Lipsitch

Published in: BMC Medicine | Issue 1/2017

Login to get access

Abstract

Background

Interventions in infectious diseases can have both direct effects on individuals who receive the intervention as well as indirect effects in the population. In addition, intervention combinations can have complex interactions at the population level, which are often difficult to adequately assess with standard study designs and analytical methods.

Discussion

Herein, we urge the adoption of a new paradigm for the design and interpretation of intervention trials in infectious diseases, particularly with regard to emerging infectious diseases, one that more accurately reflects the dynamics of the transmission process. In an increasingly complex world, simulations can explicitly represent transmission dynamics, which are critical for proper trial design and interpretation. Certain ethical aspects of a trial can also be quantified using simulations. Further, after a trial has been conducted, simulations can be used to explore the possible explanations for the observed effects.

Conclusion

Much is to be gained through a multidisciplinary approach that builds collaborations among experts in infectious disease dynamics, epidemiology, statistical science, economics, simulation methods, and the conduct of clinical trials.
Literature
1.
go back to reference Ross R. An application of the theory of probabilities to the study of a priori pathometry. Part 1. Proc R Soc Series A. 1916;92:204–30.CrossRef Ross R. An application of the theory of probabilities to the study of a priori pathometry. Part 1. Proc R Soc Series A. 1916;92:204–30.CrossRef
2.
3.
4.
go back to reference Baird S, Bohren J, McIntosh C, Özler B. Optimal design of experiments in the presence of interference. Review of Economics and Statistics. Accepted August 7, 2017. doi:10.1162/REST_a_00716, in Press. Baird S, Bohren J, McIntosh C, Özler B. Optimal design of experiments in the presence of interference. Review of Economics and Statistics. Accepted August 7, 2017. doi:10.​1162/​REST_​a_​00716, in Press.
6.
go back to reference Hussey M, Hughes J. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28:182–91.CrossRefPubMed Hussey M, Hughes J. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28:182–91.CrossRefPubMed
7.
go back to reference Ebola ca Suffit Ring Vaccination Trial Consortium. The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola. BMJ. 2015;351:h3740.PubMedCentral Ebola ca Suffit Ring Vaccination Trial Consortium. The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola. BMJ. 2015;351:h3740.PubMedCentral
8.
go back to reference Henao-Restrepo A, Longini I, Egger M, Dean N, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386:857–66.CrossRefPubMed Henao-Restrepo A, Longini I, Egger M, Dean N, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386:857–66.CrossRefPubMed
11.
go back to reference McCormick A, Abuelezam N, Fussell T, Seage 3rd GR, Lipsitch M. Displacement of sexual partnerships in trials of sexual behavior interventions: a model-based assessment of consequences. Epidemics. 2017;20:94–101.CrossRefPubMed McCormick A, Abuelezam N, Fussell T, Seage 3rd GR, Lipsitch M. Displacement of sexual partnerships in trials of sexual behavior interventions: a model-based assessment of consequences. Epidemics. 2017;20:94–101.CrossRefPubMed
12.
go back to reference Boren D, Sullivan P, Beyrer C, Baral S, Bekkerd L, Brookmeyer R. Stochastic variation in network epidemic models: implications for the design of community level HIV prevention trials. Stat Med. 2014;33:3894–904.CrossRefPubMedPubMedCentral Boren D, Sullivan P, Beyrer C, Baral S, Bekkerd L, Brookmeyer R. Stochastic variation in network epidemic models: implications for the design of community level HIV prevention trials. Stat Med. 2014;33:3894–904.CrossRefPubMedPubMedCentral
13.
go back to reference Auranen K, Rinta-Kokko H, Halloran M. Estimating strain-specific and overall efficacy of polyvalent vaccines against pathogens with recurrent dynamics from a cross-sectional study. Biometrics. 2013;69:235–44.CrossRefPubMedPubMedCentral Auranen K, Rinta-Kokko H, Halloran M. Estimating strain-specific and overall efficacy of polyvalent vaccines against pathogens with recurrent dynamics from a cross-sectional study. Biometrics. 2013;69:235–44.CrossRefPubMedPubMedCentral
14.
go back to reference Struchiner C, Halloran M, Brunet R, Ribeiro J, Massad E. Malaria vaccines: lessons from field trials. Cad Saude Publica. 1994;10(Supplement 2):310–26.CrossRefPubMed Struchiner C, Halloran M, Brunet R, Ribeiro J, Massad E. Malaria vaccines: lessons from field trials. Cad Saude Publica. 1994;10(Supplement 2):310–26.CrossRefPubMed
16.
go back to reference Longini I, Halloran M. A frailty mixture model for estimating vaccine efficacy. Appl Stat. 1996;45:165–73.CrossRef Longini I, Halloran M. A frailty mixture model for estimating vaccine efficacy. Appl Stat. 1996;45:165–73.CrossRef
17.
go back to reference Mehtälä J, Dagan R, Auranen K. Estimation and interpretation of heterogeneous vaccine efficacy against recurrent infections. Biometrics. 2016;72(3):976–85.CrossRefPubMed Mehtälä J, Dagan R, Auranen K. Estimation and interpretation of heterogeneous vaccine efficacy against recurrent infections. Biometrics. 2016;72(3):976–85.CrossRefPubMed
18.
go back to reference National Academies of Sciences, Engineering, and Medicine. Integrating Clinical Research into Epidemic Response: The Ebola Experience. Washington, DC: The National Academies Press; 2017. National Academies of Sciences, Engineering, and Medicine. Integrating Clinical Research into Epidemic Response: The Ebola Experience. Washington, DC: The National Academies Press; 2017.
19.
go back to reference Lagakos S, Gable A. Challenges to HIV prevention – seeking effective measures in the absence of a vaccine. N Engl J Med. 2008;358:1543–5.CrossRefPubMed Lagakos S, Gable A. Challenges to HIV prevention – seeking effective measures in the absence of a vaccine. N Engl J Med. 2008;358:1543–5.CrossRefPubMed
20.
go back to reference Bellan S, Pulliam J, Pearson C, Champredon D, et al. Statistical power and validity of Ebola vaccine trials in Sierra Leone: a simulation study of trial design and analysis. Lancet Infect Dis. 2015;15:703–10.CrossRefPubMedPubMedCentral Bellan S, Pulliam J, Pearson C, Champredon D, et al. Statistical power and validity of Ebola vaccine trials in Sierra Leone: a simulation study of trial design and analysis. Lancet Infect Dis. 2015;15:703–10.CrossRefPubMedPubMedCentral
21.
go back to reference Berry D. Bayesian clinical trials. Drug discovery. Nature Rev. 2006;5(1):27–36. Berry D. Bayesian clinical trials. Drug discovery. Nature Rev. 2006;5(1):27–36.
23.
go back to reference Harling G, Wang R, Onnela J, De Gruttola V. Leveraging contact network structure in the design of cluster randomized trials. Clin Trials. 2017;14:37–47.CrossRefPubMed Harling G, Wang R, Onnela J, De Gruttola V. Leveraging contact network structure in the design of cluster randomized trials. Clin Trials. 2017;14:37–47.CrossRefPubMed
24.
go back to reference Robotham J, Graves N, Cookson B, Barnett A, Wilson J, Edgeworth J, Batra R, Cuthbertson B, Cooper B. Screening, isolation, and decolonisation strategies in the control of meticillin resistant Staphylococcus aureus in intensive care units: cost effectiveness evaluation. BMJ. 2011;343:5694. doi:10.1136/bmj.d5694.CrossRef Robotham J, Graves N, Cookson B, Barnett A, Wilson J, Edgeworth J, Batra R, Cuthbertson B, Cooper B. Screening, isolation, and decolonisation strategies in the control of meticillin resistant Staphylococcus aureus in intensive care units: cost effectiveness evaluation. BMJ. 2011;343:5694. doi:10.​1136/​bmj.​d5694.CrossRef
25.
go back to reference Churchyard G, Fielding K, Lewis J, Coetzee L, Corbett EL, et al. A trial of mass isoniazid preventive therapy for tuberculosis control. N Eng J Med. 2014;370:301–10.CrossRef Churchyard G, Fielding K, Lewis J, Coetzee L, Corbett EL, et al. A trial of mass isoniazid preventive therapy for tuberculosis control. N Eng J Med. 2014;370:301–10.CrossRef
26.
go back to reference Fielding K, Grant A, Hayes R, Chaisson R, Corbett E, Churchyard G, Thibela TB. Design and methods of a cluster randomised trial of the effect of community-wide isoniazid preventive therapy on tuberculosis amongst gold miners in South Africa. Contemp Clin Trials. 2011;32:382–92.CrossRefPubMed Fielding K, Grant A, Hayes R, Chaisson R, Corbett E, Churchyard G, Thibela TB. Design and methods of a cluster randomised trial of the effect of community-wide isoniazid preventive therapy on tuberculosis amongst gold miners in South Africa. Contemp Clin Trials. 2011;32:382–92.CrossRefPubMed
27.
28.
go back to reference Grosskurth H, Todd J, Mwijarubi E, et al. Impact of improved treatment of sexually transmitted disease on HIV infection in rural Tanzania: randomised controlled trial. Lancet. 1995;346:530–6.CrossRefPubMed Grosskurth H, Todd J, Mwijarubi E, et al. Impact of improved treatment of sexually transmitted disease on HIV infection in rural Tanzania: randomised controlled trial. Lancet. 1995;346:530–6.CrossRefPubMed
29.
go back to reference Wawer M, Sewankambo N, Serwadda D, et al. Control of sexually transmitted disease for AIDS prevention in Uganda: a randomized community trial. Lancet. 1999;353:525–35.CrossRefPubMed Wawer M, Sewankambo N, Serwadda D, et al. Control of sexually transmitted disease for AIDS prevention in Uganda: a randomized community trial. Lancet. 1999;353:525–35.CrossRefPubMed
30.
go back to reference White R, Orroth K, Korenromp E, et al. Can population differences explain the contrasting results of the Mwanza, Rakai, and Masaka HIV/sexually transmitted disease intervention trials?: a modeling study. J Acquir Immune Defic Syndr. 2004;37:1500–13.CrossRefPubMed White R, Orroth K, Korenromp E, et al. Can population differences explain the contrasting results of the Mwanza, Rakai, and Masaka HIV/sexually transmitted disease intervention trials?: a modeling study. J Acquir Immune Defic Syndr. 2004;37:1500–13.CrossRefPubMed
31.
go back to reference Orroth K, White R, Korenromp E, Bakker R, Changalucha J, Habbema J, Hayes R. Empirical observations underestimate the proportion of human immunodeficiency virus infections attributable to sexually transmitted diseases in the Mwanza and Rakai sexually transmitted disease treatment trials: simulation results. Sex Transm Dis. 2006;33(9):536–44.CrossRefPubMed Orroth K, White R, Korenromp E, Bakker R, Changalucha J, Habbema J, Hayes R. Empirical observations underestimate the proportion of human immunodeficiency virus infections attributable to sexually transmitted diseases in the Mwanza and Rakai sexually transmitted disease treatment trials: simulation results. Sex Transm Dis. 2006;33(9):536–44.CrossRefPubMed
32.
go back to reference Ali M, Emch M, von Seidlein M, Yunus M, Sack D, Rao M, Holmgren J, Clemens J. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet. 2005;366:44–9.CrossRefPubMed Ali M, Emch M, von Seidlein M, Yunus M, Sack D, Rao M, Holmgren J, Clemens J. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet. 2005;366:44–9.CrossRefPubMed
33.
go back to reference Ali M, Sur D, You Y, et al. Herd protection by a bivalent killed whole-cell oral cholera vaccine in the slums of Kolkata. India Clin Inf Dis. 2013;56:1123–31.CrossRef Ali M, Sur D, You Y, et al. Herd protection by a bivalent killed whole-cell oral cholera vaccine in the slums of Kolkata. India Clin Inf Dis. 2013;56:1123–31.CrossRef
34.
go back to reference Perez-Heydrich C, Hudgens M, Halloran M, Clemens J, Ali M, Emch M. Assessing effects of cholera vaccination in the presence of interference. Biometrics. 2014;70(3):731–41.CrossRefPubMedPubMedCentral Perez-Heydrich C, Hudgens M, Halloran M, Clemens J, Ali M, Emch M. Assessing effects of cholera vaccination in the presence of interference. Biometrics. 2014;70(3):731–41.CrossRefPubMedPubMedCentral
37.
go back to reference Staples P, Prague M, DeGruttola V, Onnela J. Leveraging contact network information in cluster randomized trials of infectious processes. 2016. arXiv:1610.00039 [stat.AP]. arXiv.org. Staples P, Prague M, DeGruttola V, Onnela J. Leveraging contact network information in cluster randomized trials of infectious processes. 2016. arXiv:1610.00039 [stat.AP]. arXiv.org.
Metadata
Title
Simulations for designing and interpreting intervention trials in infectious diseases
Authors
M. Elizabeth Halloran
Kari Auranen
Sarah Baird
Nicole E. Basta
Steven E. Bellan
Ron Brookmeyer
Ben S. Cooper
Victor DeGruttola
James P. Hughes
Justin Lessler
Eric T. Lofgren
Ira M. Longini
Jukka-Pekka Onnela
Berk Özler
George R. Seage
Thomas A. Smith
Alessandro Vespignani
Emilia Vynnycky
Marc Lipsitch
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2017
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-017-0985-3

Other articles of this Issue 1/2017

BMC Medicine 1/2017 Go to the issue