Skip to main content
Top
Published in: Maxillofacial Plastic and Reconstructive Surgery 1/2019

Open Access 01-12-2019 | Silicone | Research

Improvement of biohistological response of facial implant materials by tantalum surface treatment

Published in: Maxillofacial Plastic and Reconstructive Surgery | Issue 1/2019

Login to get access

Abstract

Background

A compact passive oxide layer can grow on tantalum (Ta). It has been reported that this oxide layer can facilitate bone ingrowth in vivo though the development of bone-like apatite, which promotes hard and soft tissue adhesion. Thus, Ta surface treatment on facial implant materials may improve the tissue response, which could result in less fibrotic encapsulation and make the implant more stable on the bone surface. The purposes of this study were to verify whether surface treatment of facial implant materials using Ta can improve the biohistobiological response and to determine the possibility of potential clinical applications.

Methods

Two different and commonly used implant materials, silicone and expanded polytetrafluoroethylene (ePTFE), were treated via Ta ion implantation using a Ta sputtering gun. Ta-treated samples were compared with untreated samples using in vitro and in vivo evaluations. Osteoblast (MG-63) and fibroblast (NIH3T3) cell viability with the Ta-treated implant material was assessed, and the tissue response was observed by placing the implants over the rat calvarium (n = 48) for two different lengths of time. Foreign body and inflammatory reactions were observed, and soft tissue thickness between the calvarium and the implant as well as the bone response was measured.

Results

The treatment of facial implant materials using Ta showed a tendency toward increased fibroblast and osteoblast viability, although this result was not statistically significant. During the in vivo study, both Ta-treated and untreated implants showed similar foreign body reactions. However, the Ta-treated implant materials (silicone and ePTFE) showed a tendency toward better histological features: lower soft tissue thickness between the implant and the underlying calvarium as well as an increase in new bone activity.

Conclusion

Ta surface treatment using ion implantation on silicone and ePTFE facial implant materials showed the possibility of reducing soft tissue intervention between the calvarium and the implant to make the implant more stable on the bone surface. Although no statistically significant improvement was observed, Ta treatment revealed a tendency toward an improved biohistological response of silicone and ePTFE facial implants. Conclusively, tantalum treatment is beneficial and has the potential for clinical applications.
Literature
1.
go back to reference Osman RB, Swain MV (2015) A critical review of dental implant materials with an emphasis on titanium. Materials (Basel) 8:932–958CrossRef Osman RB, Swain MV (2015) A critical review of dental implant materials with an emphasis on titanium. Materials (Basel) 8:932–958CrossRef
2.
go back to reference Fischer S, Hirche C, Reichenberger MA, Kiefer J, Diehm Y, Mukundan S, Alhefzi M et al (2015) Silicone implants with smooth surfaces induce thinner but denser fibrotic capsules compared to those with textured surfaces in a rodent model. PLoS One 10:e0132131CrossRef Fischer S, Hirche C, Reichenberger MA, Kiefer J, Diehm Y, Mukundan S, Alhefzi M et al (2015) Silicone implants with smooth surfaces induce thinner but denser fibrotic capsules compared to those with textured surfaces in a rodent model. PLoS One 10:e0132131CrossRef
3.
go back to reference Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R (2010) The immunology of fibrosis: innate and adaptive responses. Trends Immunol 31:110–119CrossRef Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R (2010) The immunology of fibrosis: innate and adaptive responses. Trends Immunol 31:110–119CrossRef
4.
go back to reference Niamtu J (2006) Advanta ePTFE facial implants in cosmetic facial surgery. J Oral Maxillofac Surg 64:543–549CrossRef Niamtu J (2006) Advanta ePTFE facial implants in cosmetic facial surgery. J Oral Maxillofac Surg 64:543–549CrossRef
5.
go back to reference Huo WT, Zhao LZ, Yu S, Yu ZT, Zhang PX, Zhang YS (2017) Significantly enhanced osteoblast response to nano-grained pure tantalum. Sci Rep 7:40868CrossRef Huo WT, Zhao LZ, Yu S, Yu ZT, Zhang PX, Zhang YS (2017) Significantly enhanced osteoblast response to nano-grained pure tantalum. Sci Rep 7:40868CrossRef
6.
go back to reference Romo T, McLaughlin LA, Levine JM, Sclafani AP (2002) Nasal implants: autogenous, semisynthetic, and synthetic. Facial Plast Surg Clin North Am 10:155–166CrossRef Romo T, McLaughlin LA, Levine JM, Sclafani AP (2002) Nasal implants: autogenous, semisynthetic, and synthetic. Facial Plast Surg Clin North Am 10:155–166CrossRef
7.
go back to reference Levine B, Della Valle CJ, Jacobs JJ (2006) Applications of porous tantalum in total hip arthroplasty. J Am Acad Orthop Surg 14:646–655CrossRef Levine B, Della Valle CJ, Jacobs JJ (2006) Applications of porous tantalum in total hip arthroplasty. J Am Acad Orthop Surg 14:646–655CrossRef
8.
go back to reference Li X, Wang L, Yu X, Feng Y, Wang C, Yang K et al (2013) Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation. Korean J Couns Psychother 33:2987–2994 Li X, Wang L, Yu X, Feng Y, Wang C, Yang K et al (2013) Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation. Korean J Couns Psychother 33:2987–2994
9.
go back to reference Stenlund P, Omar O, Brohede U, Norgren S, Norlindh B, Johansson A et al (2015) Bone response to a novel Ti-Ta-Nb-Zr alloy. Acta Biomater 20:165–175CrossRef Stenlund P, Omar O, Brohede U, Norgren S, Norlindh B, Johansson A et al (2015) Bone response to a novel Ti-Ta-Nb-Zr alloy. Acta Biomater 20:165–175CrossRef
10.
go back to reference Pinese C, Lin J, Milbreta U, Li M, Wang Y, Leong KW et al (2018) Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomater 76:164–177CrossRef Pinese C, Lin J, Milbreta U, Li M, Wang Y, Leong KW et al (2018) Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomater 76:164–177CrossRef
11.
go back to reference Schallenberger MA, Rossmeier K, Lovick HM, Meyer TR, Aberman HM, Juda GA (2014) Comparison of the osteogenic potential of OsteoSelect demineralized bone matrix putty to NovaBone calcium-phosphosilicate synthetic putty in a cranial defect model. J Craniofac Surg 25:657–661CrossRef Schallenberger MA, Rossmeier K, Lovick HM, Meyer TR, Aberman HM, Juda GA (2014) Comparison of the osteogenic potential of OsteoSelect demineralized bone matrix putty to NovaBone calcium-phosphosilicate synthetic putty in a cranial defect model. J Craniofac Surg 25:657–661CrossRef
12.
go back to reference Levine B, Sporer S, Della Valle CJ, Jacobs JJ, Paprosky W (2007) Porous tantalum in reconstructive surgery of the knee: a review. J Knee Surg 20:185–194CrossRef Levine B, Sporer S, Della Valle CJ, Jacobs JJ, Paprosky W (2007) Porous tantalum in reconstructive surgery of the knee: a review. J Knee Surg 20:185–194CrossRef
13.
go back to reference Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27:4671–4681CrossRef Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27:4671–4681CrossRef
14.
go back to reference Wang Q, Qiao Y, Cheng M, Jiang G, He G, Chen Y et al (2016) Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth. Sci Rep 6:26248CrossRef Wang Q, Qiao Y, Cheng M, Jiang G, He G, Chen Y et al (2016) Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth. Sci Rep 6:26248CrossRef
15.
go back to reference Patel K, Brandstetter K (2016) Solid implants in facial plastic surgery: potential complications and how to prevent them. Facial Plast Surg 32:520–531CrossRef Patel K, Brandstetter K (2016) Solid implants in facial plastic surgery: potential complications and how to prevent them. Facial Plast Surg 32:520–531CrossRef
16.
go back to reference Brügger OE, Bornstein MM, Kuchler U, Janner SF, Chappuis V, Buser D (2015) Implant therapy in a surgical specialty clinic: an analysis of patients, indications, surgical procedures, risk factors, and early failures. Int J Oral Maxillofac Implants 30:151–160CrossRef Brügger OE, Bornstein MM, Kuchler U, Janner SF, Chappuis V, Buser D (2015) Implant therapy in a surgical specialty clinic: an analysis of patients, indications, surgical procedures, risk factors, and early failures. Int J Oral Maxillofac Implants 30:151–160CrossRef
17.
go back to reference Filová E, Bullett NA, Bacáková L, Grausová L, Haycock JW, Hlucilová J et al (2009) Regionally-selective cell colonization of micropatterned surfaces prepared by plasma polymerization of acrylic acid and 1,7-octadiene. Physiol Res 58:669–684PubMed Filová E, Bullett NA, Bacáková L, Grausová L, Haycock JW, Hlucilová J et al (2009) Regionally-selective cell colonization of micropatterned surfaces prepared by plasma polymerization of acrylic acid and 1,7-octadiene. Physiol Res 58:669–684PubMed
18.
go back to reference Kastellorizios M, Tipnis N, Burgess DJ (2015) Foreign body reaction to subcutaneous implants. Adv Exp Med Biol 865:93–108CrossRef Kastellorizios M, Tipnis N, Burgess DJ (2015) Foreign body reaction to subcutaneous implants. Adv Exp Med Biol 865:93–108CrossRef
19.
go back to reference Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111CrossRef Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111CrossRef
20.
go back to reference Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23CrossRef Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23CrossRef
21.
go back to reference Kjøller K, Hölmich LR, Jacobsen PH, Friis S, Fryzek J, McLaughlin JK et al (2001) Capsular contracture after cosmetic breast implant surgery in Denmark. Ann Plast Surg 47:359–366CrossRef Kjøller K, Hölmich LR, Jacobsen PH, Friis S, Fryzek J, McLaughlin JK et al (2001) Capsular contracture after cosmetic breast implant surgery in Denmark. Ann Plast Surg 47:359–366CrossRef
Metadata
Title
Improvement of biohistological response of facial implant materials by tantalum surface treatment
Publication date
01-12-2019
Keyword
Silicone
Published in
Maxillofacial Plastic and Reconstructive Surgery / Issue 1/2019
Electronic ISSN: 2288-8586
DOI
https://doi.org/10.1186/s40902-019-0231-3

Other articles of this Issue 1/2019

Maxillofacial Plastic and Reconstructive Surgery 1/2019 Go to the issue