Skip to main content
Top
Published in: Cancer Cell International 1/2013

Open Access 01-12-2013 | Primary research

Si-RNA mediated knockdown of CELF1 gene suppressed the proliferation of human lung cancer cells

Authors: Li-Na Wu, Yi-Jun Xue, Li-Jian Zhang, Xue-Mei Ma, Jin-Feng Chen

Published in: Cancer Cell International | Issue 1/2013

Login to get access

Abstract

Background

Lung cancer is the leading cause of cancer-related death in the world, with metastasis as the main reason for the mortality. CELF1 is an RNA-binding protein controlling the post-transcriptional regulation of genes related to cell survival. As yet, there is little knowledge of CELF1 expression and biological function in lung cancer. This study investigated the expression levels of CELF1 in lung cancer tissues and the biological function of CELF1 in lung cancer cells.

Methods

CELF1 mRNA expression was determined in lung cancer and normal tissues, and the relationship between the expression level of CELF1 and clinicopathological parameters was evaluated. The biological function of CELF1 in A549 and H1299 lung cancer cell lines growth was examined.

Results

The expression of CELF1 was higher in human lung cancer tissues compared with the normal lung tissue. Lentiviral-mediated transfection of CELF1 siRNA effectively silenced the expression of CELF1 in both A549 and H1299 cells. Moreover, CELF1 knockdown markedly reduced the survival rate of lung cancer cells. Colony formation assays revealed a reduction in the number and size of lung cancer cell colonies from CELF1 knockdown.

Conclusion

These results indicated that CELF1 may have significant roles in the progression of lung cancer, and suggested that siRNA mediated silencing of CELF1 could be an effective tool in lung cancer treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parkin DM, Pisani P, Ferlay J: Global cancer statistics. CA: Cancer J Clin. 1999, 49 (1): 33-64. 10.3322/canjclin.49.1.33. 31 Parkin DM, Pisani P, Ferlay J: Global cancer statistics. CA: Cancer J Clin. 1999, 49 (1): 33-64. 10.3322/canjclin.49.1.33. 31
2.
go back to reference Caldon CE, Lee CS, Sutherland RL, Musgrove EA: Wilms’ tumor protein 1: an early target of progestin regulation in T-47D breast cancer cells that modulates proliferation and differentiation. Oncogene. 2008, 27 (1): 126-138. 10.1038/sj.onc.1210622.CrossRefPubMed Caldon CE, Lee CS, Sutherland RL, Musgrove EA: Wilms’ tumor protein 1: an early target of progestin regulation in T-47D breast cancer cells that modulates proliferation and differentiation. Oncogene. 2008, 27 (1): 126-138. 10.1038/sj.onc.1210622.CrossRefPubMed
3.
go back to reference Yang M, Yuan F, Li P, Chen Z, Chen A, Li S, Hu C: Interferon regulatory factor 4 binding protein is a novel p53 target gene and suppresses cisplatin-induced apoptosis of breast cancer cells. Mol Cancer. 2012, 11: 54-10.1186/1476-4598-11-54.PubMedCentralCrossRefPubMed Yang M, Yuan F, Li P, Chen Z, Chen A, Li S, Hu C: Interferon regulatory factor 4 binding protein is a novel p53 target gene and suppresses cisplatin-induced apoptosis of breast cancer cells. Mol Cancer. 2012, 11: 54-10.1186/1476-4598-11-54.PubMedCentralCrossRefPubMed
4.
go back to reference Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P, Yang W, Yin G, Hittelman WN, Yu D: ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res. 2006, 66 (4): 2028-2037. 10.1158/0008-5472.CAN-04-4559.CrossRefPubMed Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P, Yang W, Yin G, Hittelman WN, Yu D: ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res. 2006, 66 (4): 2028-2037. 10.1158/0008-5472.CAN-04-4559.CrossRefPubMed
5.
go back to reference Veale D, Ashcroft T, Marsh C, Gibson GJ, Harris AL: Epidermal growth factor receptors in non-small cell lung cancer. British J Cancer. 1987, 55 (5): 513-516. 10.1038/bjc.1987.104.CrossRef Veale D, Ashcroft T, Marsh C, Gibson GJ, Harris AL: Epidermal growth factor receptors in non-small cell lung cancer. British J Cancer. 1987, 55 (5): 513-516. 10.1038/bjc.1987.104.CrossRef
6.
go back to reference Timchenko NA, Welm AL, Lu X, Timchenko LT: CUG repeat binding protein (CUGBP1) interacts with the 5’ region of C/EBPbeta mRNA and regulates translation of C/EBPbeta isoforms. Nucleic Acids Res. 1999, 27 (22): 4517-4525. 10.1093/nar/27.22.4517.PubMedCentralCrossRefPubMed Timchenko NA, Welm AL, Lu X, Timchenko LT: CUG repeat binding protein (CUGBP1) interacts with the 5’ region of C/EBPbeta mRNA and regulates translation of C/EBPbeta isoforms. Nucleic Acids Res. 1999, 27 (22): 4517-4525. 10.1093/nar/27.22.4517.PubMedCentralCrossRefPubMed
7.
go back to reference Chang ET, Donahue JM, Xiao L, Cui Y, Rao JN, Turner DJ, Twaddell WS, Wang JY, Battafarano RJ: The RNA-binding protein CUG-BP1 increases survivin expression in oesophageal cancer cells through enhanced mRNA stability. Biochem J. 2012, 446 (1): 113-123. 10.1042/BJ20120112.PubMedCentralCrossRefPubMed Chang ET, Donahue JM, Xiao L, Cui Y, Rao JN, Turner DJ, Twaddell WS, Wang JY, Battafarano RJ: The RNA-binding protein CUG-BP1 increases survivin expression in oesophageal cancer cells through enhanced mRNA stability. Biochem J. 2012, 446 (1): 113-123. 10.1042/BJ20120112.PubMedCentralCrossRefPubMed
8.
go back to reference Rattenbacher B, Beisang D, Wiesner DL, Jeschke JC, Von Hohenberg M, St Louis-Vlasova IA, Bohjanen PR: Analysis of CUGBP1 targets identifies GU-repeat sequences that mediate rapid mRNA decay. Mol Cell Biol. 2010, 30 (16): 3970-3980. 10.1128/MCB.00624-10.PubMedCentralCrossRefPubMed Rattenbacher B, Beisang D, Wiesner DL, Jeschke JC, Von Hohenberg M, St Louis-Vlasova IA, Bohjanen PR: Analysis of CUGBP1 targets identifies GU-repeat sequences that mediate rapid mRNA decay. Mol Cell Biol. 2010, 30 (16): 3970-3980. 10.1128/MCB.00624-10.PubMedCentralCrossRefPubMed
9.
go back to reference Zheng Y, Miskimins WK: CUG-binding protein represses translation of p27Kip1 mRNA through its internal ribosomal entry site. RNA Biol. 2011, 8 (3): 365-371. 10.4161/rna.8.3.14804.PubMedCentralCrossRefPubMed Zheng Y, Miskimins WK: CUG-binding protein represses translation of p27Kip1 mRNA through its internal ribosomal entry site. RNA Biol. 2011, 8 (3): 365-371. 10.4161/rna.8.3.14804.PubMedCentralCrossRefPubMed
10.
go back to reference Ward AJ, Rimer M, Killian JM, Dowling JJ, Cooper TA: CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Gen. 2010, 19 (18): 3614-3622. 10.1093/hmg/ddq277.PubMedCentralCrossRefPubMed Ward AJ, Rimer M, Killian JM, Dowling JJ, Cooper TA: CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Gen. 2010, 19 (18): 3614-3622. 10.1093/hmg/ddq277.PubMedCentralCrossRefPubMed
11.
go back to reference Kang S, Koh ES, Vinod SK, Jalaludin B: Cost analysis of lung cancer management in South Western Sydney. J Med Imaging Radiat Oncol. 2012, 56 (2): 235-241. 10.1111/j.1754-9485.2012.02354.x.CrossRefPubMed Kang S, Koh ES, Vinod SK, Jalaludin B: Cost analysis of lung cancer management in South Western Sydney. J Med Imaging Radiat Oncol. 2012, 56 (2): 235-241. 10.1111/j.1754-9485.2012.02354.x.CrossRefPubMed
12.
go back to reference Benjamin D, Moroni C: mRNA stability and cancer: an emerging link?. Expert Opinion Biol Ther. 2007, 7 (10): 1515-1529. 10.1517/14712598.7.10.1515.CrossRef Benjamin D, Moroni C: mRNA stability and cancer: an emerging link?. Expert Opinion Biol Ther. 2007, 7 (10): 1515-1529. 10.1517/14712598.7.10.1515.CrossRef
13.
go back to reference Cui YH, Xiao L, Rao JN, Zou T, Liu L, Chen Y, Turner DJ, Gorospe M, Wang JY: miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies. Mol Biol Cell. 2012, 23 (1): 151-162. 10.1091/mbc.E11-05-0456.PubMedCentralCrossRefPubMed Cui YH, Xiao L, Rao JN, Zou T, Liu L, Chen Y, Turner DJ, Gorospe M, Wang JY: miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies. Mol Biol Cell. 2012, 23 (1): 151-162. 10.1091/mbc.E11-05-0456.PubMedCentralCrossRefPubMed
14.
go back to reference Vlasova-St Louis I, Bohjanen PR: Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1. Curr Opin Gen Dev. 2011, 21 (4): 444-451. 10.1016/j.gde.2011.03.002.CrossRef Vlasova-St Louis I, Bohjanen PR: Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1. Curr Opin Gen Dev. 2011, 21 (4): 444-451. 10.1016/j.gde.2011.03.002.CrossRef
15.
go back to reference Jones K, Timchenko L, Timchenko NA: The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev. 2012, 11 (4): 442-449. 10.1016/j.arr.2012.02.007.PubMedCentralCrossRefPubMed Jones K, Timchenko L, Timchenko NA: The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev. 2012, 11 (4): 442-449. 10.1016/j.arr.2012.02.007.PubMedCentralCrossRefPubMed
16.
go back to reference Devi GR: siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006, 13 (9): 819-829. 10.1038/sj.cgt.7700931.CrossRefPubMed Devi GR: siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006, 13 (9): 819-829. 10.1038/sj.cgt.7700931.CrossRefPubMed
17.
go back to reference Jiao W, Zhao J, Wang M, Wang Y, Luo Y, Zhao Y, Tang D, Shen Y: CUG-binding protein 1 (CUGBP1) expression and prognosis of non-small cell lung cancer. Clin Transl Oncol. 2013, 15 (10): 789-795. 10.1007/s12094-013-1005-5.CrossRefPubMed Jiao W, Zhao J, Wang M, Wang Y, Luo Y, Zhao Y, Tang D, Shen Y: CUG-binding protein 1 (CUGBP1) expression and prognosis of non-small cell lung cancer. Clin Transl Oncol. 2013, 15 (10): 789-795. 10.1007/s12094-013-1005-5.CrossRefPubMed
18.
go back to reference Talwar S, Balasubramanian S, Sundaramurthy S, House R, Wilusz CJ, Kuppuswamy D, D’Silva N, Gillespie MB, Hill EG, Palanisamy V: Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biol. 2013, 10 (2): 277-286. 10.4161/rna.23315.PubMedCentralCrossRefPubMed Talwar S, Balasubramanian S, Sundaramurthy S, House R, Wilusz CJ, Kuppuswamy D, D’Silva N, Gillespie MB, Hill EG, Palanisamy V: Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biol. 2013, 10 (2): 277-286. 10.4161/rna.23315.PubMedCentralCrossRefPubMed
Metadata
Title
Si-RNA mediated knockdown of CELF1 gene suppressed the proliferation of human lung cancer cells
Authors
Li-Na Wu
Yi-Jun Xue
Li-Jian Zhang
Xue-Mei Ma
Jin-Feng Chen
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2013
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-13-115

Other articles of this Issue 1/2013

Cancer Cell International 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine