Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2016

Open Access 01-12-2016 | Original research

Short structured feedback training is equivalent to a mechanical feedback device in two-rescuer BLS: a randomised simulation study

Authors: Noemi Pavo, Georg Goliasch, Franz Josef Nierscher, Dominik Stumpf, Moritz Haugk, Jan Breckwoldt, Kurt Ruetzler, Robert Greif, Henrik Fischer

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2016

Login to get access

Abstract

Background

Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer (“human feedback”) has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device.

Methods

In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group “sCPR” was taught standard BLS without continuous feedback, serving as control. Group “mfCPR” was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group “hfCPR” was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as “effective compression ratio” (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups.

Results

ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p < 0.001) and showed fewer incorrect decompressions (26 vs. 33 %, p = 0.044). On the other hand, absolute hands-off time was higher in the hfCPR group (67 vs. 60 s, p = 0.021).

Conclusions

The quality of CPR with human feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.
Literature
1.
2.
go back to reference Hasselqvist-Ax I, Riva G, Herlitz J, Rosenqvist M, Hollenberg J, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015;372:2307–15.CrossRefPubMed Hasselqvist-Ax I, Riva G, Herlitz J, Rosenqvist M, Hollenberg J, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015;372:2307–15.CrossRefPubMed
3.
go back to reference Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300:1423–31.CrossRefPubMedPubMedCentral Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300:1423–31.CrossRefPubMedPubMedCentral
4.
go back to reference Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, et al. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128:417–35.CrossRefPubMed Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, et al. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation. 2013;128:417–35.CrossRefPubMed
5.
go back to reference Lindner TW, Soreide E, Nilsen OB, Torunn MW, Lossius HM. Good outcome in every fourth resuscitation attempt is achievable–an Utstein template report from the Stavanger region. Resuscitation. 2011;82:1508–13.CrossRefPubMed Lindner TW, Soreide E, Nilsen OB, Torunn MW, Lossius HM. Good outcome in every fourth resuscitation attempt is achievable–an Utstein template report from the Stavanger region. Resuscitation. 2011;82:1508–13.CrossRefPubMed
6.
go back to reference Berg RA, Sanders AB, Kern KB, Hilwig RW, Heidenreich JW, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation. 2001;104:2465–70.CrossRefPubMed Berg RA, Sanders AB, Kern KB, Hilwig RW, Heidenreich JW, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation. 2001;104:2465–70.CrossRefPubMed
7.
go back to reference Kern KB, Hilwig RW, Berg RA, Sanders AB, Ewy GA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation. 2002;105:645–9.CrossRefPubMed Kern KB, Hilwig RW, Berg RA, Sanders AB, Ewy GA. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation. 2002;105:645–9.CrossRefPubMed
8.
go back to reference Sayre MR, Koster RW, Botha M, Cave DM, Cudnik MT, et al. Part 5: adult basic life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122:S298–324.CrossRefPubMed Sayre MR, Koster RW, Botha M, Cave DM, Cudnik MT, et al. Part 5: adult basic life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122:S298–324.CrossRefPubMed
9.
go back to reference Eftestol T, Sunde K, Steen PA. Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation. 2002;105:2270–3.CrossRefPubMed Eftestol T, Sunde K, Steen PA. Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation. 2002;105:2270–3.CrossRefPubMed
10.
go back to reference Kramer-Johansen J, Myklebust H, Wik L, Fellows B, Svensson L, et al. Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation. 2006;71:283–92.CrossRefPubMed Kramer-Johansen J, Myklebust H, Wik L, Fellows B, Svensson L, et al. Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation. 2006;71:283–92.CrossRefPubMed
11.
go back to reference Wik L, Kramer-Johansen J, Myklebust H, Sorebo H, Svensson L, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA. 2005;293:299–304.CrossRefPubMed Wik L, Kramer-Johansen J, Myklebust H, Sorebo H, Svensson L, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA. 2005;293:299–304.CrossRefPubMed
12.
go back to reference Kirkbright S, Finn J, Tohira H, Bremner A, Jacobs I, et al. Audiovisual feedback device use by health care professionals during CPR: a systematic review and meta-analysis of randomised and non-randomised trials. Resuscitation. 2014;85:460–71.CrossRefPubMed Kirkbright S, Finn J, Tohira H, Bremner A, Jacobs I, et al. Audiovisual feedback device use by health care professionals during CPR: a systematic review and meta-analysis of randomised and non-randomised trials. Resuscitation. 2014;85:460–71.CrossRefPubMed
13.
go back to reference Dine CJ, Gersh RE, Leary M, Riegel BJ, Bellini LM, et al. Improving cardiopulmonary resuscitation quality and resuscitation training by combining audiovisual feedback and debriefing. Crit Care Med. 2008;36:2817–22.CrossRefPubMed Dine CJ, Gersh RE, Leary M, Riegel BJ, Bellini LM, et al. Improving cardiopulmonary resuscitation quality and resuscitation training by combining audiovisual feedback and debriefing. Crit Care Med. 2008;36:2817–22.CrossRefPubMed
14.
go back to reference Lukas RP, Van Aken H, Engel P, Bohn A. Real-time feedback systems for improvement of resuscitation quality. Anaesthesist. 2011;60:653–60.CrossRefPubMed Lukas RP, Van Aken H, Engel P, Bohn A. Real-time feedback systems for improvement of resuscitation quality. Anaesthesist. 2011;60:653–60.CrossRefPubMed
15.
go back to reference Isbye DL, Hoiby P, Rasmussen MB, Sommer J, Lippert FK, et al. Voice advisory manikin versus instructor facilitated training in cardiopulmonary resuscitation. Resuscitation. 2008;79:73–81.CrossRefPubMed Isbye DL, Hoiby P, Rasmussen MB, Sommer J, Lippert FK, et al. Voice advisory manikin versus instructor facilitated training in cardiopulmonary resuscitation. Resuscitation. 2008;79:73–81.CrossRefPubMed
16.
go back to reference Greif R, Stumpf D, Neuhold S, Rutzler K, Theiler L, et al. Effective compression ratio–a new measurement of the quality of thorax compression during CPR. Resuscitation. 2013;84:672–7.CrossRefPubMed Greif R, Stumpf D, Neuhold S, Rutzler K, Theiler L, et al. Effective compression ratio–a new measurement of the quality of thorax compression during CPR. Resuscitation. 2013;84:672–7.CrossRefPubMed
17.
go back to reference Sopka S, Biermann H, Rossaint R, Knott S, Skorning M, et al. Evaluation of a newly developed media-supported 4-step approach for basic life support training. Scand J Trauma Resusc Emerg Med. 2012;20:37.CrossRefPubMedPubMedCentral Sopka S, Biermann H, Rossaint R, Knott S, Skorning M, et al. Evaluation of a newly developed media-supported 4-step approach for basic life support training. Scand J Trauma Resusc Emerg Med. 2012;20:37.CrossRefPubMedPubMedCentral
18.
go back to reference Travers AH, Perkins GD, Berg RA, Castren M, Considine J, et al. Part 3: adult basic life support and automated external defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2015;132:S51–83.CrossRefPubMed Travers AH, Perkins GD, Berg RA, Castren M, Considine J, et al. Part 3: adult basic life support and automated external defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2015;132:S51–83.CrossRefPubMed
19.
go back to reference Zapletal B, Greif R, Stumpf D, Nierscher FJ, Frantal S, et al. Comparing three CPR feedback devices and standard BLS in a single rescuer scenario: a randomised simulation study. Resuscitation. 2014;85:560–6.CrossRefPubMed Zapletal B, Greif R, Stumpf D, Nierscher FJ, Frantal S, et al. Comparing three CPR feedback devices and standard BLS in a single rescuer scenario: a randomised simulation study. Resuscitation. 2014;85:560–6.CrossRefPubMed
20.
go back to reference Aufderheide TP, Pirrallo RG, Yannopoulos D, Klein JP, von Briesen C, et al. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation. 2005;64:353–62.CrossRefPubMed Aufderheide TP, Pirrallo RG, Yannopoulos D, Klein JP, von Briesen C, et al. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation. 2005;64:353–62.CrossRefPubMed
21.
go back to reference Noordergraaf GJ, Drinkwaard BW, van Berkom PF, van Hemert HP, Venema A, et al. The quality of chest compressions by trained personnel: the effect of feedback, via the CPREzy, in a randomized controlled trial using a manikin model. Resuscitation. 2006;69:241–52.CrossRefPubMed Noordergraaf GJ, Drinkwaard BW, van Berkom PF, van Hemert HP, Venema A, et al. The quality of chest compressions by trained personnel: the effect of feedback, via the CPREzy, in a randomized controlled trial using a manikin model. Resuscitation. 2006;69:241–52.CrossRefPubMed
22.
go back to reference Pozner CN, Almozlino A, Elmer J, Poole S, McNamara D, et al. Cardiopulmonary resuscitation feedback improves the quality of chest compression provided by hospital health care professionals. Am J Emerg Med. 2011;29:618–25.CrossRefPubMed Pozner CN, Almozlino A, Elmer J, Poole S, McNamara D, et al. Cardiopulmonary resuscitation feedback improves the quality of chest compression provided by hospital health care professionals. Am J Emerg Med. 2011;29:618–25.CrossRefPubMed
23.
go back to reference Fischer H, Neuhold S, Zapletal B, Hochbrugger E, Koinig H, et al. A manually powered mechanical resuscitation device used by a single rescuer: a randomised controlled manikin study. Resuscitation. 2011;82:913–9.CrossRefPubMed Fischer H, Neuhold S, Zapletal B, Hochbrugger E, Koinig H, et al. A manually powered mechanical resuscitation device used by a single rescuer: a randomised controlled manikin study. Resuscitation. 2011;82:913–9.CrossRefPubMed
24.
go back to reference Binder C, Schmolzer GM, O’Reilly M, Schwaberger B, Urlesberger B, et al. Human or monitor feedback to improve mask ventilation during simulated neonatal cardiopulmonary resuscitation. Arch Dis Child Fetal Neonatal Ed. 2014;99:F120–3.CrossRefPubMed Binder C, Schmolzer GM, O’Reilly M, Schwaberger B, Urlesberger B, et al. Human or monitor feedback to improve mask ventilation during simulated neonatal cardiopulmonary resuscitation. Arch Dis Child Fetal Neonatal Ed. 2014;99:F120–3.CrossRefPubMed
25.
go back to reference Paal P, Falk M, Gruber E, Beikircher W, Ellerton J, et al. Effects of training time and feedback on ventilation skills in lay rescuers. Emerg Med J. 2010;27:313–6.CrossRefPubMed Paal P, Falk M, Gruber E, Beikircher W, Ellerton J, et al. Effects of training time and feedback on ventilation skills in lay rescuers. Emerg Med J. 2010;27:313–6.CrossRefPubMed
Metadata
Title
Short structured feedback training is equivalent to a mechanical feedback device in two-rescuer BLS: a randomised simulation study
Authors
Noemi Pavo
Georg Goliasch
Franz Josef Nierscher
Dominik Stumpf
Moritz Haugk
Jan Breckwoldt
Kurt Ruetzler
Robert Greif
Henrik Fischer
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-016-0265-9

Other articles of this Issue 1/2016

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2016 Go to the issue