Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020

01-12-2020 | Shock | Original research

Validation of a point-of-care capillary lactate measuring device (Lactate Pro 2)

Authors: Anette Raa, Geir Arne Sunde, Bjørn Bolann, Reidar Kvåle, Christopher Bjerkvig, Håkon S. Eliassen, Tore Wentzel-Larsen, Jon-Kenneth Heltne

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2020

Login to get access

Abstract

Background

The measurement of lactate in emergency medical services has the potential for earlier detection of shock and can be performed with a point-of-care handheld device. Validation of a point-of-care handheld device is required for prehospital implementation.

Aim

The primary aim was to validate the accuracy of Lactate Pro 2 in healthy volunteers and in haemodynamically compromised intensive care patients. The secondary aim was to evaluate which sample site, fingertip or earlobe, is most accurate compared to arterial lactate.

Methods

Arterial, venous and capillary blood samples from fingertips and earlobes were collected from intensive care patients and healthy volunteers. Arterial and venous blood lactate samples were analysed on a stationary hospital blood gas analyser (ABL800 Flex) as the reference device and compared to the Lactate Pro 2. We used the Bland-Altman method to calculate the limits of agreement and used mixed effect models to compare instruments and sample sites. A total of 49 intensive care patients with elevated lactate and 11 healthy volunteers with elevated lactate were included.

Results

There was no significant difference in measured lactate between Lactate Pro 2 and the reference method using arterial blood in either the healthy volunteers or the intensive care patients. Capillary lactate measurement in the fingertip and earlobe of intensive care patients was 47% (95% CI (29 to 68%), p < 0.001) and 27% (95% CI (11 to 45%), p < 0.001) higher, respectively, than the corresponding arterial blood lactate. In the healthy volunteers, we found that capillary blood lactate in the fingertip was 14% higher than arterial blood lactate (95% CI (4 to 24%), p = 0.003) and no significant difference between capillary blood lactate in the earlobe and arterial blood lactate.

Conclusion

Our results showed that the handheld Lactate Pro 2 had good agreement with the reference method using arterial blood in both intensive care patients and healthy volunteers. However, we found that the agreement was poorer using venous blood in both groups. Furthermore, the earlobe may be a better sample site than the fingertip in intensive care patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33(2):113–22.PubMed Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33(2):113–22.PubMed
2.
go back to reference Hooper TJ, De Pasquale M, Strandenes G, Sunde G, Ward KR. Challenges and possibilities in forward resuscitation. Shock. 2014;41(Suppl 1):13–20.PubMed Hooper TJ, De Pasquale M, Strandenes G, Sunde G, Ward KR. Challenges and possibilities in forward resuscitation. Shock. 2014;41(Suppl 1):13–20.PubMed
3.
go back to reference Holler JG, Bech CN, Henriksen DP, Mikkelsen S, Pedersen C, Lassen AT. Nontraumatic hypotension and shock in the emergency department and the prehospital setting, prevalence, etiology, and mortality: a systematic review. PLoS One. 2015;10(3):e0119331.PubMedPubMedCentral Holler JG, Bech CN, Henriksen DP, Mikkelsen S, Pedersen C, Lassen AT. Nontraumatic hypotension and shock in the emergency department and the prehospital setting, prevalence, etiology, and mortality: a systematic review. PLoS One. 2015;10(3):e0119331.PubMedPubMedCentral
4.
go back to reference Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2014;370(6):583.PubMed Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2014;370(6):583.PubMed
5.
go back to reference Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc. 2013;88(10):1127–40.PubMedPubMedCentral Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc. 2013;88(10):1127–40.PubMedPubMedCentral
6.
go back to reference Jansen TC, van Bommel J, Mulder PG, Rommes JH, Schieveld SJ, Bakker J. The prognostic value of blood lactate levels relative to that of vital signs in the pre-hospital setting: a pilot study. Crit Care. 2008;12(6):R160.PubMedPubMedCentral Jansen TC, van Bommel J, Mulder PG, Rommes JH, Schieveld SJ, Bakker J. The prognostic value of blood lactate levels relative to that of vital signs in the pre-hospital setting: a pilot study. Crit Care. 2008;12(6):R160.PubMedPubMedCentral
7.
go back to reference Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 2005;9(5):441–53.PubMedPubMedCentral Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 2005;9(5):441–53.PubMedPubMedCentral
8.
go back to reference Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the surviving sepsis campaign database. Crit Care Med. 2015;43(3):567–73. Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the surviving sepsis campaign database. Crit Care Med. 2015;43(3):567–73.
9.
go back to reference Dunham CM, Siegel JH, Weireter L, Fabian M, Goodarzi S, Guadalupi P, et al. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med. 1991;19(2):231–43.PubMed Dunham CM, Siegel JH, Weireter L, Fabian M, Goodarzi S, Guadalupi P, et al. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med. 1991;19(2):231–43.PubMed
11.
go back to reference Green JP, Berger T, Garg N, Shapiro NI. Serum lactate is a better predictor of short-term mortality when stratified by C-reactive protein in adult emergency department patients hospitalized for a suspected infection. Ann Emerg Med. 2011;57(3):291–5.PubMed Green JP, Berger T, Garg N, Shapiro NI. Serum lactate is a better predictor of short-term mortality when stratified by C-reactive protein in adult emergency department patients hospitalized for a suspected infection. Ann Emerg Med. 2011;57(3):291–5.PubMed
12.
go back to reference Okello M, Makobore P, Wangoda R, Upoki A, Galukande M. Serum lactate as a predictor of early outcomes among trauma patients in Uganda. Int J Emerg Med. 2014;7:20.PubMedPubMedCentral Okello M, Makobore P, Wangoda R, Upoki A, Galukande M. Serum lactate as a predictor of early outcomes among trauma patients in Uganda. Int J Emerg Med. 2014;7:20.PubMedPubMedCentral
13.
go back to reference Guyette F, Suffoletto B, Castillo JL, Quintero J, Callaway C, Puyana JC. Prehospital serum lactate as a predictor of outcomes in trauma patients: a retrospective observational study. J Trauma. 2011;70(4):782–6.PubMed Guyette F, Suffoletto B, Castillo JL, Quintero J, Callaway C, Puyana JC. Prehospital serum lactate as a predictor of outcomes in trauma patients: a retrospective observational study. J Trauma. 2011;70(4):782–6.PubMed
14.
go back to reference Guyette FX, Meier EN, Newgard C, McKnight B, Daya M, Bulger EM, et al. A comparison of prehospital lactate and systolic blood pressure for predicting the need for resuscitative care in trauma transported by ground. J Trauma Acute Care Surg. 2015;78(3):600–6.PubMed Guyette FX, Meier EN, Newgard C, McKnight B, Daya M, Bulger EM, et al. A comparison of prehospital lactate and systolic blood pressure for predicting the need for resuscitative care in trauma transported by ground. J Trauma Acute Care Surg. 2015;78(3):600–6.PubMed
15.
go back to reference van Beest PA, Mulder PJ, Oetomo SB, van den Broek B, Kuiper MA, Spronk PE. Measurement of lactate in a prehospital setting is related to outcome. Eur J Emerg Med. 2009;16(6):318–22.PubMed van Beest PA, Mulder PJ, Oetomo SB, van den Broek B, Kuiper MA, Spronk PE. Measurement of lactate in a prehospital setting is related to outcome. Eur J Emerg Med. 2009;16(6):318–22.PubMed
16.
go back to reference Shapiro NI, Fisher C, Donnino M, Cataldo L, Tang A, Trzeciak S, et al. The feasibility and accuracy of point-of-care lactate measurement in emergency department patients with suspected infection. J Emerg Med. 2010;39(1):89–94.PubMed Shapiro NI, Fisher C, Donnino M, Cataldo L, Tang A, Trzeciak S, et al. The feasibility and accuracy of point-of-care lactate measurement in emergency department patients with suspected infection. J Emerg Med. 2010;39(1):89–94.PubMed
17.
go back to reference Luong MWIM, Taylor CM. Stress testing: a contribution from Dr. Robert a. Bruce, father of exercise physiology. B C Med J. 2016;58(2):70–6. Luong MWIM, Taylor CM. Stress testing: a contribution from Dr. Robert a. Bruce, father of exercise physiology. B C Med J. 2016;58(2):70–6.
18.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.PubMed Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.PubMed
19.
go back to reference Team RC. R: A language and environment for statistical computing; 2014. Team RC. R: A language and environment for statistical computing; 2014.
20.
go back to reference Contenti J, Corraze H, Lemoel F, Levraut J. Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients. Am J Emerg Med. 2015;33(2):167–72.PubMed Contenti J, Corraze H, Lemoel F, Levraut J. Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients. Am J Emerg Med. 2015;33(2):167–72.PubMed
21.
go back to reference Sabat J, Gould S, Gillego E, Hariprashad A, Wiest C, Almonte S, et al. The use of finger-stick blood to assess lactate in critically ill surgical patients. Ann Med Surg. 2016;10:41–8. Sabat J, Gould S, Gillego E, Hariprashad A, Wiest C, Almonte S, et al. The use of finger-stick blood to assess lactate in critically ill surgical patients. Ann Med Surg. 2016;10:41–8.
22.
go back to reference Collange O, Garcia V, Kindo M, Meyer N, Lavaux T, Mertes PM, et al. Comparison of capillary and arterial lactate levels in patients with shock. Anaesth Crit Care Pain Med. 2017;36(3):157–62.PubMed Collange O, Garcia V, Kindo M, Meyer N, Lavaux T, Mertes PM, et al. Comparison of capillary and arterial lactate levels in patients with shock. Anaesth Crit Care Pain Med. 2017;36(3):157–62.PubMed
23.
go back to reference Pattharanitima P, Tongyoo S, Ratanarat R, Wilachone W, Poompichet A, Permpikul C. Correlation of arterial, central venous and capillary lactate levels in septic shock patients. J Med Assoc Thail. 2011;94(Suppl 1):S175–80. Pattharanitima P, Tongyoo S, Ratanarat R, Wilachone W, Poompichet A, Permpikul C. Correlation of arterial, central venous and capillary lactate levels in septic shock patients. J Med Assoc Thail. 2011;94(Suppl 1):S175–80.
Metadata
Title
Validation of a point-of-care capillary lactate measuring device (Lactate Pro 2)
Authors
Anette Raa
Geir Arne Sunde
Bjørn Bolann
Reidar Kvåle
Christopher Bjerkvig
Håkon S. Eliassen
Tore Wentzel-Larsen
Jon-Kenneth Heltne
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
Shock
Shock
Care
DOI
https://doi.org/10.1186/s13049-020-00776-z

Other articles of this Issue 1/2020

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020 Go to the issue