Skip to main content
Top
Published in: Annals of Intensive Care 1/2019

Open Access 01-12-2019 | Shock | Research

How to detect a positive response to a fluid bolus when cardiac output is not measured?

Authors: Zakaria Ait-Hamou, Jean-Louis Teboul, Nadia Anguel, Xavier Monnet

Published in: Annals of Intensive Care | Issue 1/2019

Login to get access

Abstract

Background

Volume expansion is aimed at increasing cardiac output (CO), but this variable is not always directly measured. We assessed the ability of changes in arterial pressure, pulse pressure variation (PPV) and heart rate (HR) or of a combination of them to detect a positive response of cardiac output (CO) to fluid administration.

Methods

We retrospectively included 491 patients with circulatory failure. Before and after a 500-mL normal saline infusion, we measured CO (PiCCO device), HR, systolic (SAP), diastolic (DAP), mean (MAP) and pulse (PP) arterial pressure, PPV, shock index (HR/SAP) and the PP/HR ratio.

Results

The fluid-induced changes in HR were not correlated with the fluid-induced changes in CO. The area under the receiver operating characteristic curve (AUROC) for changes in HR as detectors of a positive fluid response (CO increase ≥ 15%) was not different from 0.5. The fluid-induced changes in SAP, MAP, PP, PPV, shock index (HR/SAP) and the PP/HR ratio were correlated with the fluid-induced changes in CO, but with r < 0.4. The best detection was provided by increases in PP, but it was rough (AUROC = 0.719 ± 0.023, best threshold: increase ≥ 10%, sensitivity = 72 [66–77]%, specificity = 64 [57–70]%). Neither the decrease in shock index nor the changes in other indices combining changes in HR, shock index, PPV and PP provided a better detection of a positive fluid response than changes in PP.

Conclusion

A positive response to fluid was roughly detected by changes in PP and not detected by changes in HR. Changes in combined indices including the shock index and the PP/HR ratio did not provide a better diagnostic accuracy.
Appendix
Available only for authorised users
Literature
3.
go back to reference Cecconi M, Hofer C, Teboul J-L, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study. Intensive Care Med. 2015;41(9):1529–37.PubMedPubMedCentralCrossRef Cecconi M, Hofer C, Teboul J-L, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study. Intensive Care Med. 2015;41(9):1529–37.PubMedPubMedCentralCrossRef
4.
go back to reference Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, et al. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine. Crit Care Med. 2011;39(6):1394–9.PubMedCrossRef Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, et al. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine. Crit Care Med. 2011;39(6):1394–9.PubMedCrossRef
5.
go back to reference Le Manach Y, Hofer CK, Lehot J-J, Vallet B, Goarin J-P, Tavernier B, et al. Can changes in arterial pressure be used to detect changes in cardiac output during volume expansion in the perioperative period? Anesthesiology. 2012;117(6):1165–74.PubMedCrossRef Le Manach Y, Hofer CK, Lehot J-J, Vallet B, Goarin J-P, Tavernier B, et al. Can changes in arterial pressure be used to detect changes in cardiac output during volume expansion in the perioperative period? Anesthesiology. 2012;117(6):1165–74.PubMedCrossRef
6.
go back to reference Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent J-L. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38(3):422–8.PubMedCrossRef Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent J-L. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38(3):422–8.PubMedCrossRef
7.
go back to reference Lakhal K, Ehrmann S, Perrotin D, Wolff M, Boulain T. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive). Intensive Care Med. 2013;39(11):1953–62.PubMedCrossRef Lakhal K, Ehrmann S, Perrotin D, Wolff M, Boulain T. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive). Intensive Care Med. 2013;39(11):1953–62.PubMedCrossRef
8.
go back to reference Boulain T, Boisrame-Helms J, Ehrmann S, Lascarrou J-B, Bouglé A, Chiche A, et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med. 2015;41(2):248–56.PubMedCrossRef Boulain T, Boisrame-Helms J, Ehrmann S, Lascarrou J-B, Bouglé A, Chiche A, et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med. 2015;41(2):248–56.PubMedCrossRef
9.
go back to reference Pottecher J, Chemla D, Xavier L, Liu N, Chazot T, Marescaux J, et al. The pulse pressure/heart rate ratio as a marker of stroke volume changes during hemorrhagic shock and resuscitation in anesthetized swine. J Trauma Acute Care Surg. 2013;74(6):1438–45.PubMedCrossRef Pottecher J, Chemla D, Xavier L, Liu N, Chazot T, Marescaux J, et al. The pulse pressure/heart rate ratio as a marker of stroke volume changes during hemorrhagic shock and resuscitation in anesthetized swine. J Trauma Acute Care Surg. 2013;74(6):1438–45.PubMedCrossRef
10.
go back to reference Berger T, Green J, Horeczko T, Hagar Y, Garg N, Suarez A, et al. Shock index and early recognition of sepsis in the emergency department: pilot study. West J Emerg Med. 2013;14(2):168–74.PubMedPubMedCentralCrossRef Berger T, Green J, Horeczko T, Hagar Y, Garg N, Suarez A, et al. Shock index and early recognition of sepsis in the emergency department: pilot study. West J Emerg Med. 2013;14(2):168–74.PubMedPubMedCentralCrossRef
11.
go back to reference Jabot J, Monnet X, Bouchra L, Chemla D, Richard C, Teboul J-L. Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Crit Care Med. 2009;37(11):2913–8.PubMedCrossRef Jabot J, Monnet X, Bouchra L, Chemla D, Richard C, Teboul J-L. Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Crit Care Med. 2009;37(11):2913–8.PubMedCrossRef
12.
go back to reference Monnet X, Dres M, Ferre A, Le Teuff G, Jozwiak M, Bleibtreu A, et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth. 2012;109(3):330–8.PubMedCrossRef Monnet X, Dres M, Ferre A, Le Teuff G, Jozwiak M, Bleibtreu A, et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth. 2012;109(3):330–8.PubMedCrossRef
13.
go back to reference Monnet X, Robert J-M, Jozwiak M, Richard C, Teboul J-L. Assessment of changes in left ventricular systolic function with oesophageal Doppler. Br J Anaesth. 2013;111(5):743–9.PubMedCrossRef Monnet X, Robert J-M, Jozwiak M, Richard C, Teboul J-L. Assessment of changes in left ventricular systolic function with oesophageal Doppler. Br J Anaesth. 2013;111(5):743–9.PubMedCrossRef
14.
go back to reference Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul J-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37(3):951–6.PubMedCrossRef Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul J-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37(3):951–6.PubMedCrossRef
15.
go back to reference Monnet X, Guerin L, Jozwiak M, Bataille A, Julien F, Richard C, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth. 2012;110(2):207–13.PubMedCrossRef Monnet X, Guerin L, Jozwiak M, Bataille A, Julien F, Richard C, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth. 2012;110(2):207–13.PubMedCrossRef
16.
go back to reference Monnet X, Picard F, Lidzborski E, Mesnil M, Duranteau J, Richard C, et al. The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit Care. 2012;16(5):R212.PubMedPubMedCentralCrossRef Monnet X, Picard F, Lidzborski E, Mesnil M, Duranteau J, Richard C, et al. The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit Care. 2012;16(5):R212.PubMedPubMedCentralCrossRef
17.
go back to reference Monnet X, Bleibtreu A, Ferre A, Dres M, Gharbi R, Richard C, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40(1):152–7.PubMedCrossRef Monnet X, Bleibtreu A, Ferre A, Dres M, Gharbi R, Richard C, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40(1):152–7.PubMedCrossRef
18.
go back to reference Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;39(1):93–100.PubMedCrossRef Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;39(1):93–100.PubMedCrossRef
19.
go back to reference Silva S, Jozwiak M, Teboul J-L, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41(7):1692–701.PubMedCrossRef Silva S, Jozwiak M, Teboul J-L, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41(7):1692–701.PubMedCrossRef
22.
go back to reference Fisher RA. Statistical methods for research workers. Edinburgh: Oliver & Boyd; 1925. Fisher RA. Statistical methods for research workers. Edinburgh: Oliver & Boyd; 1925.
23.
go back to reference Tukey Beyer H, Exploratory John W, Analysis Data. Biom J. 1981;23(4):413–4. Tukey Beyer H, Exploratory John W, Analysis Data. Biom J. 1981;23(4):413–4.
24.
go back to reference Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15(4):R197.PubMedPubMedCentralCrossRef Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15(4):R197.PubMedPubMedCentralCrossRef
25.
go back to reference Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.PubMedCrossRef Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402.PubMedCrossRef
26.
go back to reference Cecconi M, Hernandez G, Dunser M, Antonelli M, Baker T, Bakker J, et al. Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med. 2019;45(1):21–32.PubMedCrossRef Cecconi M, Hernandez G, Dunser M, Antonelli M, Baker T, Bakker J, et al. Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med. 2019;45(1):21–32.PubMedCrossRef
27.
go back to reference Pottecher J, Ageron F-X, Fauché C, Chemla D, Noll E, Duranteau J, et al. Prehospital shock index and pulse pressure/heart rate ratio to predict massive transfusion after severe trauma: retrospective analysis of a large regional trauma database. J Trauma Acute Care Surg. 2016;81(4):713–22.PubMedCrossRef Pottecher J, Ageron F-X, Fauché C, Chemla D, Noll E, Duranteau J, et al. Prehospital shock index and pulse pressure/heart rate ratio to predict massive transfusion after severe trauma: retrospective analysis of a large regional trauma database. J Trauma Acute Care Surg. 2016;81(4):713–22.PubMedCrossRef
28.
go back to reference Monge García MI, Guijo González P, Gracia Romero M, Gil Cano M, Oscier C, Rhodes A, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med. 2015;41(7):1247–55.PubMedCrossRef Monge García MI, Guijo González P, Gracia Romero M, Gil Cano M, Oscier C, Rhodes A, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med. 2015;41(7):1247–55.PubMedCrossRef
29.
go back to reference Monnet X, Marik P, Teboul J-L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1935–47.PubMedCrossRef Monnet X, Marik P, Teboul J-L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1935–47.PubMedCrossRef
30.
go back to reference Convertino VA, Cooke WH, Holcomb JB. Arterial pulse pressure and its association with reduced stroke volume during progressive central hypovolemia. J Trauma Acute Care Surg. 2006;61(3):629–34.CrossRef Convertino VA, Cooke WH, Holcomb JB. Arterial pulse pressure and its association with reduced stroke volume during progressive central hypovolemia. J Trauma Acute Care Surg. 2006;61(3):629–34.CrossRef
31.
go back to reference Fischer M-O, Mahjoub Y, Boisselier C, Tavernier B, Dupont H, Leone M, et al. Arterial pulse pressure variation suitability in critical care: a French national survey. Anaesth Crit Care Pain Med. 2015;34(1):23–8.PubMedCrossRef Fischer M-O, Mahjoub Y, Boisselier C, Tavernier B, Dupont H, Leone M, et al. Arterial pulse pressure variation suitability in critical care: a French national survey. Anaesth Crit Care Pain Med. 2015;34(1):23–8.PubMedCrossRef
32.
go back to reference Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2013;112(4):681–5.PubMedCrossRef Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2013;112(4):681–5.PubMedCrossRef
33.
go back to reference Benes J, Zatloukal J, Kletecka J, Simanova A, Haidingerova L, Pradl R. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. J Clin Monit Comput. 2014;28(3):225–31.PubMedCrossRef Benes J, Zatloukal J, Kletecka J, Simanova A, Haidingerova L, Pradl R. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. J Clin Monit Comput. 2014;28(3):225–31.PubMedCrossRef
35.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.PubMedPubMedCentralCrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.PubMedPubMedCentralCrossRef
37.
go back to reference Vincent J-L, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.PubMedCrossRef Vincent J-L, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.PubMedCrossRef
38.
go back to reference Aya HD, Ster IC, Fletcher N, Grounds RM, Rhodes A, Cecconi M. Pharmacodynamic analysis of a fluid challenge. Crit Care Med. 2016;44(5):880–91.PubMedCrossRef Aya HD, Ster IC, Fletcher N, Grounds RM, Rhodes A, Cecconi M. Pharmacodynamic analysis of a fluid challenge. Crit Care Med. 2016;44(5):880–91.PubMedCrossRef
Metadata
Title
How to detect a positive response to a fluid bolus when cardiac output is not measured?
Authors
Zakaria Ait-Hamou
Jean-Louis Teboul
Nadia Anguel
Xavier Monnet
Publication date
01-12-2019
Publisher
Springer International Publishing
Keywords
Shock
Shock
Published in
Annals of Intensive Care / Issue 1/2019
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-019-0612-x

Other articles of this Issue 1/2019

Annals of Intensive Care 1/2019 Go to the issue