Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Research article

Shikonin inhibits cancer cell cycling by targeting Cdc25s

Authors: Shoude Zhang, Qiang Gao, Wei Li, Luwei Zhu, Qianhan Shang, Shuo Feng, Junmei Jia, Qiangqiang Jia, Shuo Shen, Zhanhai Su

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Shikonin, a natural naphthoquinone, is abundant in Chinese herb medicine Zicao (purple gromwell) and has a wide range of biological activities, especially for cancer. Shikonin and its analogues have been reported to induce cell-cycle arrest, but target information is still unclear. We hypothesized that shikonin, with a structure similar to that of quinone-type compounds, which are inhibitors of cell division cycle 25 (Cdc25) phosphatases, will have similar effects on Cdc25s. To test this hypothesis, the effects of shikonin on Cdc25s and cell-cycle progression were determined in this paper.

Methods

The in vitro effects of shikonin and its analogues on Cdc25s were detected by fluorometric assay kit. The binding mode between shikonin and Cdc25B was modelled by molecular docking. The dephosphorylating level of cyclin-dependent kinase 1 (CDK1), a natural substrate of Cdc25B, was tested by Western blotting. The effect of shikonin on cell cycle progression was investigated by flow cytometry analysis. We also tested the anti-proliferation activity of shikonin on cancer cell lines by MTT assay. Moreover, in vivo anti-proliferation activity was tested in a mouse xenograft tumour model.

Results

Shikonin and its analogues inhibited recombinant human Cdc25 A, B, and C phosphatase with IC50 values ranging from 2.14 ± 0.21 to 13.45 ± 1.45 μM irreversibly. The molecular modelling results showed that shikonin bound to the inhibitor binding pocket of Cdc25B with a favourable binding mode through hydrophobic interactions and hydrogen bonds. In addition, an accumulation of the tyrosine 15-phosphorylated form of CDK1 was induced by shikonin in a concentration-dependent manner in vitro and in vivo. We also confirmed that shikonin showed an anti-proliferation effect on three cancer cell lines with IC50 values ranging from 6.15 ± 0.46 to 9.56 ± 1.03 μM. Furthermore, shikonin showed a promising anti-proliferation effect on a K562 mouse xenograph tumour model.

Conclusion

In this study, we provide evidence for how shikonin induces cell cycle arrest and functions as a Cdc25s inhibitor. It shows an anti-proliferation effect both in vitro and in vivo by mediating Cdc25s.
Literature
1.
go back to reference Kristjansdottir K, Rudolph J. Cdc25 phosphatases and cancer. Chemistry & biology. 2004;11(8):1043–51.CrossRef Kristjansdottir K, Rudolph J. Cdc25 phosphatases and cancer. Chemistry & biology. 2004;11(8):1043–51.CrossRef
2.
go back to reference Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nature reviews Cancer. 2007;7(7):495–507.PubMedCrossRef Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nature reviews Cancer. 2007;7(7):495–507.PubMedCrossRef
3.
go back to reference Xing X, Chen J, Chen M. Expression of CDC25 phosphatases in human gastric cancer. Digestive diseases and sciences. 2008;53(4):949–53.PubMedCrossRef Xing X, Chen J, Chen M. Expression of CDC25 phosphatases in human gastric cancer. Digestive diseases and sciences. 2008;53(4):949–53.PubMedCrossRef
4.
go back to reference Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Current opinion in cell biology. 2006;18(2):185–91.PubMedCrossRef Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Current opinion in cell biology. 2006;18(2):185–91.PubMedCrossRef
5.
go back to reference Lavecchia A, Di Giovanni C, Novellino E. CDC25 phosphatase inhibitors: an update. Mini reviews in medicinal chemistry. 2012;12(1):62–73.PubMedCrossRef Lavecchia A, Di Giovanni C, Novellino E. CDC25 phosphatase inhibitors: an update. Mini reviews in medicinal chemistry. 2012;12(1):62–73.PubMedCrossRef
6.
go back to reference Lavecchia A, Di Giovanni C, Novellino E. Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Expert opinion on therapeutic patents. 2010;20(3):405–25.PubMedCrossRef Lavecchia A, Di Giovanni C, Novellino E. Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Expert opinion on therapeutic patents. 2010;20(3):405–25.PubMedCrossRef
7.
go back to reference Lee MH, Cho Y, Kim DH, Woo HJ, Yang JY, Kwon HJ, Yeon MJ, Park M, Kim SH, Moon C, et al. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1. Am J Transl Res. 2016;8(12):5246–55.PubMedPubMedCentral Lee MH, Cho Y, Kim DH, Woo HJ, Yang JY, Kwon HJ, Yeon MJ, Park M, Kim SH, Moon C, et al. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1. Am J Transl Res. 2016;8(12):5246–55.PubMedPubMedCentral
8.
go back to reference Brun MP, Braud E, Angotti D, Mondesert O, Quaranta M, Montes M, Miteva M, Gresh N, Ducommun B, Garbay C. Design, synthesis, and biological evaluation of novel naphthoquinone derivatives with CDC25 phosphatase inhibitory activity. Bioorg Med Chem. 2005;13(16):4871–9.PubMedCrossRef Brun MP, Braud E, Angotti D, Mondesert O, Quaranta M, Montes M, Miteva M, Gresh N, Ducommun B, Garbay C. Design, synthesis, and biological evaluation of novel naphthoquinone derivatives with CDC25 phosphatase inhibitory activity. Bioorg Med Chem. 2005;13(16):4871–9.PubMedCrossRef
9.
go back to reference Lazo JS, Nemoto K, Pestell KE, Cooley K, Southwick EC, Mitchell DA, Furey W, Gussio R, Zaharevitz DW, Joo B, et al. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Molecular pharmacology. 2002;61(4):720–8.PubMedCrossRef Lazo JS, Nemoto K, Pestell KE, Cooley K, Southwick EC, Mitchell DA, Furey W, Gussio R, Zaharevitz DW, Joo B, et al. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Molecular pharmacology. 2002;61(4):720–8.PubMedCrossRef
10.
go back to reference Tamura K, Southwick EC, Kerns J, Rosi K, Carr BI, Wilcox C, Lazo JS. Cdc25 inhibition and cell cycle arrest by a synthetic thioalkyl vitamin K analogue. Cancer research. 2000;60(5):1317–25.PubMed Tamura K, Southwick EC, Kerns J, Rosi K, Carr BI, Wilcox C, Lazo JS. Cdc25 inhibition and cell cycle arrest by a synthetic thioalkyl vitamin K analogue. Cancer research. 2000;60(5):1317–25.PubMed
11.
go back to reference Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, Vogt A, Wipf P. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J Med Chem. 2001;44(24):4042–9.PubMedCrossRef Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, Vogt A, Wipf P. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J Med Chem. 2001;44(24):4042–9.PubMedCrossRef
12.
go back to reference Brisson M, Foster C, Wipf P, Joo B, Tomko RJ Jr, Nguyen T, Lazo JS. Independent mechanistic inhibition of cdc25 phosphatases by a natural product caulibugulone. Mol Pharmacol. 2007;71(1):184–92.PubMedCrossRef Brisson M, Foster C, Wipf P, Joo B, Tomko RJ Jr, Nguyen T, Lazo JS. Independent mechanistic inhibition of cdc25 phosphatases by a natural product caulibugulone. Mol Pharmacol. 2007;71(1):184–92.PubMedCrossRef
13.
go back to reference Gong K, Li W. Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma. Free radical biology & medicine. 2011;51(12):2259–71.CrossRef Gong K, Li W. Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma. Free radical biology & medicine. 2011;51(12):2259–71.CrossRef
14.
go back to reference Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, Oppenheim JJ, Howard OM. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2003;47(9):2810–6.PubMedPubMedCentralCrossRef Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, Oppenheim JJ, Howard OM. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2003;47(9):2810–6.PubMedPubMedCentralCrossRef
15.
go back to reference Sun WX, Liu Y, Zhou W, Li HW, Yang J, Chen ZB. Shikonin inhibits TNF-alpha production through suppressing PKC-NF-kappaB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model. J Nat Med. 2017;71(2):349–56.PubMedCrossRef Sun WX, Liu Y, Zhou W, Li HW, Yang J, Chen ZB. Shikonin inhibits TNF-alpha production through suppressing PKC-NF-kappaB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model. J Nat Med. 2017;71(2):349–56.PubMedCrossRef
16.
go back to reference Liao PL, Lin CH, Li CH, Tsai CH, Ho JD, Chiou GC, Kang JJ, Cheng YW. Anti-inflammatory properties of shikonin contribute to improved early-stage diabetic retinopathy. Scientific reports. 2017;7:44985.PubMedPubMedCentralCrossRef Liao PL, Lin CH, Li CH, Tsai CH, Ho JD, Chiou GC, Kang JJ, Cheng YW. Anti-inflammatory properties of shikonin contribute to improved early-stage diabetic retinopathy. Scientific reports. 2017;7:44985.PubMedPubMedCentralCrossRef
17.
go back to reference Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30(42):4297–306.PubMedCrossRef Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30(42):4297–306.PubMedCrossRef
18.
19.
go back to reference Wada N, Kawano Y, Fujiwara S, Kikukawa Y, Okuno Y, Tasaki M, Ueda M, Ando Y, Yoshinaga K, Ri M, et al. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. Int J Oncol. 2015;46(3):963–72.PubMedCrossRef Wada N, Kawano Y, Fujiwara S, Kikukawa Y, Okuno Y, Tasaki M, Ueda M, Ando Y, Yoshinaga K, Ri M, et al. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. Int J Oncol. 2015;46(3):963–72.PubMedCrossRef
20.
go back to reference Kim HJ, Hwang KE, Park DS, Oh SH, Jun HY, Yoon KH, Jeong ET, Kim HR, Kim YS. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J Transl Med. 2017;15(1):123. Kim HJ, Hwang KE, Park DS, Oh SH, Jun HY, Yoon KH, Jeong ET, Kim HR, Kim YS. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J Transl Med. 2017;15(1):123.
21.
go back to reference Zhang Z, Zhang Z, Li Q, Jiao H, Chong D, Sun X, Zhang P, Huo Q, Liu H. Shikonin induces necroptosis by reactive oxygen species activation in nasopharyngeal carcinoma cell line CNE-2Z. J Bioenerg Biomembr. 2017;49(3):265–72.PubMedCrossRef Zhang Z, Zhang Z, Li Q, Jiao H, Chong D, Sun X, Zhang P, Huo Q, Liu H. Shikonin induces necroptosis by reactive oxygen species activation in nasopharyngeal carcinoma cell line CNE-2Z. J Bioenerg Biomembr. 2017;49(3):265–72.PubMedCrossRef
22.
go back to reference Shan ZL, Zhong L, Xiao CL, Gan LG, Xu T, Song H, Yang R, Li L, Liu BZ. Shikonin suppresses proliferation and induces apoptosis in human leukemia NB4 cells through modulation of MAPKs and cMyc. Mol Med Rep. 2017;16(3):3055–60.PubMedPubMedCentralCrossRef Shan ZL, Zhong L, Xiao CL, Gan LG, Xu T, Song H, Yang R, Li L, Liu BZ. Shikonin suppresses proliferation and induces apoptosis in human leukemia NB4 cells through modulation of MAPKs and cMyc. Mol Med Rep. 2017;16(3):3055–60.PubMedPubMedCentralCrossRef
23.
go back to reference Tang X, Zhang C, Wei J, Fang Y, Zhao R, Yu J. Apoptosis is induced by shikonin through the mitochondrial signaling pathway. Mol Med Rep. 2016;13(4):3668–74.PubMedCrossRef Tang X, Zhang C, Wei J, Fang Y, Zhao R, Yu J. Apoptosis is induced by shikonin through the mitochondrial signaling pathway. Mol Med Rep. 2016;13(4):3668–74.PubMedCrossRef
24.
go back to reference Zhang S, Yin J, Li X, Zhang J, Yue R, Diao Y, Li H, Wang H, Shan L, Zhang W. Jacarelhyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins. BMC cancer. 2014;14:689.PubMedPubMedCentralCrossRef Zhang S, Yin J, Li X, Zhang J, Yue R, Diao Y, Li H, Wang H, Shan L, Zhang W. Jacarelhyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins. BMC cancer. 2014;14:689.PubMedPubMedCentralCrossRef
25.
go back to reference Garcia-Pineres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL, Merfort I. Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem. 2001;276(43):39713–39,720.PubMedCrossRef Garcia-Pineres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL, Merfort I. Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem. 2001;276(43):39713–39,720.PubMedCrossRef
26.
go back to reference Th’ng JP, Wright PS, Hamaguchi J, Lee MG, Norbury CJ, Nurse P, Bradbury EM. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell. 1990;63(2):313–24.PubMedCrossRef Th’ng JP, Wright PS, Hamaguchi J, Lee MG, Norbury CJ, Nurse P, Bradbury EM. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell. 1990;63(2):313–24.PubMedCrossRef
27.
go back to reference Shahsavari Z, Karami-Tehrani F, Salami S, Ghasemzadeh M. RIP1K and RIP3K provoked by shikonin induce cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: necroptosis as a desperate programmed suicide pathway. Tumour Biol. 2016;37(4):4479–91.PubMedCrossRef Shahsavari Z, Karami-Tehrani F, Salami S, Ghasemzadeh M. RIP1K and RIP3K provoked by shikonin induce cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: necroptosis as a desperate programmed suicide pathway. Tumour Biol. 2016;37(4):4479–91.PubMedCrossRef
28.
go back to reference Tsuchiya A, Hirai G, Koyama Y, Oonuma K, Otani Y, Osada H, Sodeoka M. Dual-Specificity Phosphatase CDC25A/B Inhibitor Identified from a Focused Library with Nonelectrophilic Core Structure. ACS Med Chem Lett. 2012;3(4):294–8.PubMedPubMedCentralCrossRef Tsuchiya A, Hirai G, Koyama Y, Oonuma K, Otani Y, Osada H, Sodeoka M. Dual-Specificity Phosphatase CDC25A/B Inhibitor Identified from a Focused Library with Nonelectrophilic Core Structure. ACS Med Chem Lett. 2012;3(4):294–8.PubMedPubMedCentralCrossRef
29.
go back to reference Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–70.PubMedCrossRef Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–70.PubMedCrossRef
30.
go back to reference Brisson M, Nguyen T, Wipf P, Joo B, Day BW, Skoko JS, Schreiber EM, Foster C, Bansal P, Lazo JS. Redox regulation of Cdc25B by cell-active quinolinediones. Molecular pharmacology. 2005;68(6):1810–20.PubMed Brisson M, Nguyen T, Wipf P, Joo B, Day BW, Skoko JS, Schreiber EM, Foster C, Bansal P, Lazo JS. Redox regulation of Cdc25B by cell-active quinolinediones. Molecular pharmacology. 2005;68(6):1810–20.PubMed
31.
go back to reference Zhou YB, Feng X, Wang LN, Du JQ, Zhou YY, Yu HP, Zang Y, Li JY, Li J. LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer cells via ROS generation. Acta Pharmacol Sin. 2009;30(9):1359–68.PubMedPubMedCentralCrossRef Zhou YB, Feng X, Wang LN, Du JQ, Zhou YY, Yu HP, Zang Y, Li JY, Li J. LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer cells via ROS generation. Acta Pharmacol Sin. 2009;30(9):1359–68.PubMedPubMedCentralCrossRef
32.
go back to reference Reynolds RA, Yem AW, Wolfe CL, Deibel MR Jr, Chidester CG, Watenpaugh KD. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. J Mol Biol. 1999;293(3):559–68.PubMedCrossRef Reynolds RA, Yem AW, Wolfe CL, Deibel MR Jr, Chidester CG, Watenpaugh KD. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. J Mol Biol. 1999;293(3):559–68.PubMedCrossRef
33.
34.
go back to reference Wu Z, Wu L, Li L, Tashiro S-i, Onodera S, Ikejima T. p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells. J Pharmacol Sci. 2004;94(2):166–76.PubMedCrossRef Wu Z, Wu L, Li L, Tashiro S-i, Onodera S, Ikejima T. p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells. J Pharmacol Sci. 2004;94(2):166–76.PubMedCrossRef
35.
go back to reference Wu Z, Wu L-J, Li L-H, Tashiro S-I, Onodera S, Ikejima T. Shikonin regulates HeLa cell death via caspase-3 activation and blockage of DNA synthesis. J Asian Nat Prod Res. 2004;6(3):155–66.PubMedCrossRef Wu Z, Wu L-J, Li L-H, Tashiro S-I, Onodera S, Ikejima T. Shikonin regulates HeLa cell death via caspase-3 activation and blockage of DNA synthesis. J Asian Nat Prod Res. 2004;6(3):155–66.PubMedCrossRef
36.
go back to reference Yeh C-C, Kuo H-M, Li T-M, Lin J-P, Yu F-S, Lu H-F, Chung J-G, Yang J-S. Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). in vivo. 2007;21(6):1011–9.PubMed Yeh C-C, Kuo H-M, Li T-M, Lin J-P, Yu F-S, Lu H-F, Chung J-G, Yang J-S. Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). in vivo. 2007;21(6):1011–9.PubMed
37.
go back to reference Min R, Zun Z, Min Y, Wenhu D, Wenjun Y, Chenping Z. Shikonin inhibits tumor invasion via down-regulation of NF-κB-mediated MMP-9 expression in human ACC-M cells. Oral diseases. 2011;17(4):362–9.PubMedCrossRef Min R, Zun Z, Min Y, Wenhu D, Wenjun Y, Chenping Z. Shikonin inhibits tumor invasion via down-regulation of NF-κB-mediated MMP-9 expression in human ACC-M cells. Oral diseases. 2011;17(4):362–9.PubMedCrossRef
38.
go back to reference Chang I-C, Huang Y-J, Chiang T-I, Yeh C-W, Hsu L-S. Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull. 2010;33(5):816–24.PubMedCrossRef Chang I-C, Huang Y-J, Chiang T-I, Yeh C-W, Hsu L-S. Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull. 2010;33(5):816–24.PubMedCrossRef
39.
go back to reference Shahsavari Z, Karami-Tehrani F, Salami S. Shikonin induced necroptosis via reactive oxygen species in the T-47D breast cancer cell line. Asian Pac J Cancer Prev. 2015;16:7261–6.PubMedCrossRef Shahsavari Z, Karami-Tehrani F, Salami S. Shikonin induced necroptosis via reactive oxygen species in the T-47D breast cancer cell line. Asian Pac J Cancer Prev. 2015;16:7261–6.PubMedCrossRef
40.
Metadata
Title
Shikonin inhibits cancer cell cycling by targeting Cdc25s
Authors
Shoude Zhang
Qiang Gao
Wei Li
Luwei Zhu
Qianhan Shang
Shuo Feng
Junmei Jia
Qiangqiang Jia
Shuo Shen
Zhanhai Su
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-5220-x

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine