Skip to main content
Top
Published in: Pediatric Radiology 12/2010

01-12-2010 | Review

Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping

Authors: Loukas G. Astrakas, Maria I. Argyropoulou

Published in: Pediatric Radiology | Issue 12/2010

Login to get access

Abstract

Current clinical studies involve multidimensional high-resolution images containing an overwhelming amount of structural and functional information. The analysis of such a wealth of information is becoming increasingly difficult yet necessary in order to improve diagnosis, treatment and healthcare. Voxel-wise analysis is a class of modern methods of image processing in the medical field with increased popularity. It has replaced manual region of interest (ROI) analysis and has provided tools to make statistical inferences at voxel level. The introduction of voxel-based analysis software in all modern commercial scanners allows clinical use of these techniques. This review will explain the main principles, advantages and disadvantages behind these methods of image analysis.
Literature
1.
2.
go back to reference Tofts P (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease, 1st edn. Wiley, West Sussex Tofts P (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease, 1st edn. Wiley, West Sussex
3.
go back to reference Iavindrasana J, Cohen G, Depeursinge A et al (2009) Clinical data mining: a review. Yearb Med Inform 2009:121–133 Iavindrasana J, Cohen G, Depeursinge A et al (2009) Clinical data mining: a review. Yearb Med Inform 2009:121–133
4.
go back to reference Reiner BI, Siegel EL (2009) The clinical imperative of medical imaging informatics. J Digit Imaging 22:345–347PubMedCrossRef Reiner BI, Siegel EL (2009) The clinical imperative of medical imaging informatics. J Digit Imaging 22:345–347PubMedCrossRef
5.
go back to reference Evidence-Based Radiology Working Group (2001) Evidence-based radiology: a new approach to the practice of radiology. Radiology 220:566–575CrossRef Evidence-Based Radiology Working Group (2001) Evidence-based radiology: a new approach to the practice of radiology. Radiology 220:566–575CrossRef
7.
go back to reference Boone JM (2007) Radiological interpretation 2020: toward quantitative image assessment. Med Phys 34:4173–4179PubMedCrossRef Boone JM (2007) Radiological interpretation 2020: toward quantitative image assessment. Med Phys 34:4173–4179PubMedCrossRef
9.
go back to reference Dhawan AP, Huang HK, Kim DS (eds) (2008) Principles and advanced methods in medical imaging and image analysis, 1st edn. World Scientific, Singapore Dhawan AP, Huang HK, Kim DS (eds) (2008) Principles and advanced methods in medical imaging and image analysis, 1st edn. World Scientific, Singapore
10.
go back to reference Seeram E (2004) Digital image processing. Radiol Technol 75:435–452, quiz 453–435PubMed Seeram E (2004) Digital image processing. Radiol Technol 75:435–452, quiz 453–435PubMed
11.
go back to reference Xydis V, Astrakas L, Drougia A et al (2006) Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio. Pediatr Radiol 36:934–939PubMedCrossRef Xydis V, Astrakas L, Drougia A et al (2006) Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio. Pediatr Radiol 36:934–939PubMedCrossRef
12.
go back to reference Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337PubMedCrossRef Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337PubMedCrossRef
13.
go back to reference Jain R, Kasturi R, Schunck BG (1995) Introduction to machine vision, 2nd edn. McGraw Hill, New York Jain R, Kasturi R, Schunck BG (1995) Introduction to machine vision, 2nd edn. McGraw Hill, New York
14.
go back to reference Gonzalez RC, Woods RE (2001) Digital Image Processing. Prentice Hall, New Jersey Gonzalez RC, Woods RE (2001) Digital Image Processing. Prentice Hall, New Jersey
15.
go back to reference Bankman IN (ed) (2000) Handbook of medical imaging: processing and analysis management. Academic, San Diego Bankman IN (ed) (2000) Handbook of medical imaging: processing and analysis management. Academic, San Diego
16.
go back to reference Olabarriaga SD, Smeulders AW (2001) Interaction in the segmentation of medical images: a survey. Med Image Anal 5:127–142PubMedCrossRef Olabarriaga SD, Smeulders AW (2001) Interaction in the segmentation of medical images: a survey. Med Image Anal 5:127–142PubMedCrossRef
17.
go back to reference Young R, Babb J, Law M et al (2007) Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 26:1053–1063PubMedCrossRef Young R, Babb J, Law M et al (2007) Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 26:1053–1063PubMedCrossRef
18.
go back to reference Law M, Young R, Babb J et al (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR 28:761–766PubMed Law M, Young R, Babb J et al (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR 28:761–766PubMed
19.
go back to reference Dehmeshki J, Ruto AC, Arridge S et al (2001) Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 46:600–609PubMedCrossRef Dehmeshki J, Ruto AC, Arridge S et al (2001) Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 46:600–609PubMedCrossRef
20.
go back to reference Nusbaum AO, Tang CY, Buchsbaum MS et al (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR 22:136–142PubMed Nusbaum AO, Tang CY, Buchsbaum MS et al (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR 22:136–142PubMed
21.
go back to reference Yamamoto A, Miki Y, Adachi S et al (2006) Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy. Eur J Radiol 57:423–427PubMedCrossRef Yamamoto A, Miki Y, Adachi S et al (2006) Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy. Eur J Radiol 57:423–427PubMedCrossRef
22.
go back to reference Argyropoulou MI, Zikou AK, Tzovara I et al (2007) Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging. Eur Radiol 17:1669–1674PubMedCrossRef Argyropoulou MI, Zikou AK, Tzovara I et al (2007) Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging. Eur Radiol 17:1669–1674PubMedCrossRef
23.
go back to reference Mori N, Miki Y, Fushimi Y et al (2008) Cerebral infarction associated with moyamoya disease: histogram-based quantitative analysis of diffusion tensor imaging—a preliminary study. Magn Reson Imaging 26:835–840PubMedCrossRef Mori N, Miki Y, Fushimi Y et al (2008) Cerebral infarction associated with moyamoya disease: histogram-based quantitative analysis of diffusion tensor imaging—a preliminary study. Magn Reson Imaging 26:835–840PubMedCrossRef
24.
go back to reference Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR 21:1034–1038PubMed Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR 21:1034–1038PubMed
25.
go back to reference Frackowiak RSJ, Friston KJ, Frith C et al (eds) (2003) Human brain function, 2nd edn. Academic, San Diego Frackowiak RSJ, Friston KJ, Frith C et al (eds) (2003) Human brain function, 2nd edn. Academic, San Diego
26.
go back to reference Henson R, Büchel C, Josephs O et al (1999) The slice-timing problem in event-related fMRI. NeuroImage 9:S125 Henson R, Büchel C, Josephs O et al (1999) The slice-timing problem in event-related fMRI. NeuroImage 9:S125
27.
go back to reference Van de Moortele PF, Cerf B, Lobel E et al (1997) Latencies in fMRI time-series: effect of slice acquisition order and perception. NMR Biomed 10:230–236PubMedCrossRef Van de Moortele PF, Cerf B, Lobel E et al (1997) Latencies in fMRI time-series: effect of slice acquisition order and perception. NMR Biomed 10:230–236PubMedCrossRef
28.
go back to reference Van de Moortele PF, Poline J-B, Paradis A-L et al (1998) Slice-dependent time shift efficiently corrected by interpolation in multi-slice EPI fMRI series. NeuroImage 7:S607 Van de Moortele PF, Poline J-B, Paradis A-L et al (1998) Slice-dependent time shift efficiently corrected by interpolation in multi-slice EPI fMRI series. NeuroImage 7:S607
29.
go back to reference Friston KJ, Fletcher P, Josephs O et al (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40PubMedCrossRef Friston KJ, Fletcher P, Josephs O et al (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40PubMedCrossRef
30.
go back to reference Behrenbruch CP, Petroudi S, Bond S et al (2004) Image filtering techniques for medical image post-processing: an overview. Br J Radiol 77(Spec No 2):S126–S132PubMedCrossRef Behrenbruch CP, Petroudi S, Bond S et al (2004) Image filtering techniques for medical image post-processing: an overview. Br J Radiol 77(Spec No 2):S126–S132PubMedCrossRef
31.
go back to reference D’ Agostino RB (ed) (2004) Tutorials in biostatistics volume 2. Statistical modelling of complex medical data. Wiley, West Sussex D’ Agostino RB (ed) (2004) Tutorials in biostatistics volume 2. Statistical modelling of complex medical data. Wiley, West Sussex
32.
33.
go back to reference Friston K, Ashburner J, Kiebel S et al (eds) (2006) Statistical parametric mapping. The analysis of functional brain images, 1st edn. Academic, San Diego Friston K, Ashburner J, Kiebel S et al (eds) (2006) Statistical parametric mapping. The analysis of functional brain images, 1st edn. Academic, San Diego
34.
go back to reference Friston KJ, Holmes AP, Poline JB et al (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53PubMedCrossRef Friston KJ, Holmes AP, Poline JB et al (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53PubMedCrossRef
35.
go back to reference Carlin JB, Doyle LW (2001) Statistics for clinicians: 4: basic concepts of statistical reasoning: hypothesis tests and the t-test. J Paediatr Child Health 37:72–77PubMedCrossRef Carlin JB, Doyle LW (2001) Statistics for clinicians: 4: basic concepts of statistical reasoning: hypothesis tests and the t-test. J Paediatr Child Health 37:72–77PubMedCrossRef
36.
go back to reference Matthews DE, Farewell VT (2007) Using and understanding medical statistics, 4th edn. Karger, Basel Matthews DE, Farewell VT (2007) Using and understanding medical statistics, 4th edn. Karger, Basel
37.
go back to reference Perneger TV (1998) What’s wrong with Bonferroni adjustments. Bmj 316:1236–1238PubMed Perneger TV (1998) What’s wrong with Bonferroni adjustments. Bmj 316:1236–1238PubMed
38.
go back to reference Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878PubMedCrossRef Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878PubMedCrossRef
39.
go back to reference Worsley KJ, Evans AC, Marrett S et al (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918PubMed Worsley KJ, Evans AC, Marrett S et al (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918PubMed
40.
go back to reference Worsley KJ, Marrett S, Neelin P et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4:58–73PubMedCrossRef Worsley KJ, Marrett S, Neelin P et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4:58–73PubMedCrossRef
41.
go back to reference Deneux T, Faugeras O (2006) Using nonlinear models in fMRI data analysis: model selection and activation detection. Neuroimage 32:1669–1689PubMedCrossRef Deneux T, Faugeras O (2006) Using nonlinear models in fMRI data analysis: model selection and activation detection. Neuroimage 32:1669–1689PubMedCrossRef
42.
go back to reference Friston KJ, Mechelli A, Turner R et al (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12:466–477PubMedCrossRef Friston KJ, Mechelli A, Turner R et al (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12:466–477PubMedCrossRef
43.
go back to reference Friston KJ, Glaser DE, Henson RN et al (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512PubMedCrossRef Friston KJ, Glaser DE, Henson RN et al (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512PubMedCrossRef
44.
go back to reference Friston KJ, Penny W, Phillips C et al (2002) Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16:465–483PubMedCrossRef Friston KJ, Penny W, Phillips C et al (2002) Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16:465–483PubMedCrossRef
45.
go back to reference Groves AR, Chappell MA, Woolrich MW (2009) Combined spatial and non-spatial prior for inference on MRI time-series. Neuroimage 45:795–809PubMedCrossRef Groves AR, Chappell MA, Woolrich MW (2009) Combined spatial and non-spatial prior for inference on MRI time-series. Neuroimage 45:795–809PubMedCrossRef
46.
go back to reference Woolrich MW, Jbabdi S, Patenaude B et al (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186PubMedCrossRef Woolrich MW, Jbabdi S, Patenaude B et al (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186PubMedCrossRef
47.
go back to reference Lukic AS, Wernick MN, Tzikas DG et al (2007) Bayesian kernel methods for analysis of functional neuroimages. IEEE Trans Med Imaging 26:1613–1624PubMedCrossRef Lukic AS, Wernick MN, Tzikas DG et al (2007) Bayesian kernel methods for analysis of functional neuroimages. IEEE Trans Med Imaging 26:1613–1624PubMedCrossRef
48.
go back to reference Holden M (2008) A review of geometric transformations for nonrigid body registration. IEEE Trans Med Imaging 27:111–128PubMedCrossRef Holden M (2008) A review of geometric transformations for nonrigid body registration. IEEE Trans Med Imaging 27:111–128PubMedCrossRef
49.
go back to reference McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1:91–108PubMedCrossRef McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1:91–108PubMedCrossRef
50.
go back to reference Davatzikos C (1996) Spatial normalization of 3D brain images using deformable models. J Comput Assist Tomogr 20:656–665PubMedCrossRef Davatzikos C (1996) Spatial normalization of 3D brain images using deformable models. J Comput Assist Tomogr 20:656–665PubMedCrossRef
51.
go back to reference Thompson P, Toga AW (1996) A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 15:402–417PubMedCrossRef Thompson P, Toga AW (1996) A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 15:402–417PubMedCrossRef
52.
go back to reference Sandor S, Leahy R (1997) Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans Med Imaging 16:41–54PubMedCrossRef Sandor S, Leahy R (1997) Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans Med Imaging 16:41–54PubMedCrossRef
53.
go back to reference Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004PubMedCrossRef Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004PubMedCrossRef
54.
go back to reference Studholme C, Constable RT, Duncan JS (2000) Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model. IEEE Trans Med Imaging 19:1115–1127PubMedCrossRef Studholme C, Constable RT, Duncan JS (2000) Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model. IEEE Trans Med Imaging 19:1115–1127PubMedCrossRef
55.
go back to reference Thevenaz P, Unser M (2000) Optimization of mutual information for multiresolution image registration. IEEE Trans Image Process 9:2083–2099PubMedCrossRef Thevenaz P, Unser M (2000) Optimization of mutual information for multiresolution image registration. IEEE Trans Image Process 9:2083–2099PubMedCrossRef
56.
go back to reference Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to medical cerebral imaging. Thieme Medical Publishers Inc, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to medical cerebral imaging. Thieme Medical Publishers Inc, New York
57.
go back to reference Mazziotta J, Toga A, Evans A et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322PubMedCrossRef Mazziotta J, Toga A, Evans A et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322PubMedCrossRef
58.
go back to reference Good CD, Johnsrude I, Ashburner J et al (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14:685–700PubMedCrossRef Good CD, Johnsrude I, Ashburner J et al (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14:685–700PubMedCrossRef
59.
go back to reference Burgund ED, Kang HC, Kelly JE et al (2002) The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage 17:184–200PubMedCrossRef Burgund ED, Kang HC, Kelly JE et al (2002) The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage 17:184–200PubMedCrossRef
60.
go back to reference Muzik O, Chugani DC, Juhasz C et al (2000) Statistical parametric mapping: assessment of application in children. Neuroimage 12:538–549PubMedCrossRef Muzik O, Chugani DC, Juhasz C et al (2000) Statistical parametric mapping: assessment of application in children. Neuroimage 12:538–549PubMedCrossRef
61.
go back to reference Hoeksma MR, Kenemans JL, Kemner C et al (2005) Variability in spatial normalization of pediatric and adult brain images. Clin Neurophysiol 116:1188–1194PubMedCrossRef Hoeksma MR, Kenemans JL, Kemner C et al (2005) Variability in spatial normalization of pediatric and adult brain images. Clin Neurophysiol 116:1188–1194PubMedCrossRef
62.
go back to reference Wilke M, Schmithorst VJ, Holland SK (2002) Assessment of spatial normalization of whole-brain magnetic resonance images in children. Hum Brain Mapp 17:48–60PubMedCrossRef Wilke M, Schmithorst VJ, Holland SK (2002) Assessment of spatial normalization of whole-brain magnetic resonance images in children. Hum Brain Mapp 17:48–60PubMedCrossRef
63.
go back to reference Yoon U, Fonov VS, Perusse D et al (2009) The effect of template choice on morphometric analysis of pediatric brain data. Neuroimage 45:769–777PubMedCrossRef Yoon U, Fonov VS, Perusse D et al (2009) The effect of template choice on morphometric analysis of pediatric brain data. Neuroimage 45:769–777PubMedCrossRef
64.
go back to reference Wilke M, Schmithorst VJ, Holland SK (2003) Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magn Reson Med 50:749–757PubMedCrossRef Wilke M, Schmithorst VJ, Holland SK (2003) Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magn Reson Med 50:749–757PubMedCrossRef
65.
go back to reference Wilke M, Holland SK, Altaye M et al (2008) Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage 41:903–913PubMedCrossRef Wilke M, Holland SK, Altaye M et al (2008) Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage 41:903–913PubMedCrossRef
66.
go back to reference Altaye M, Holland SK, Wilke M et al (2008) Infant brain probability templates for MRI segmentation and normalization. Neuroimage 43:721–730PubMedCrossRef Altaye M, Holland SK, Wilke M et al (2008) Infant brain probability templates for MRI segmentation and normalization. Neuroimage 43:721–730PubMedCrossRef
67.
go back to reference Prastawa M, Gilmore JH, Lin W et al (2005) Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 9:457–466PubMedCrossRef Prastawa M, Gilmore JH, Lin W et al (2005) Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 9:457–466PubMedCrossRef
68.
go back to reference Weisenfeld NI, Mewes AUJ, Warfield SK (2006) Segmentation of newborn brain MRI. Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro 1:776–769 Weisenfeld NI, Mewes AUJ, Warfield SK (2006) Segmentation of newborn brain MRI. Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro 1:776–769
69.
go back to reference Song Z, Awate SP, Licht DJ et al (2007) Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. Med Image Comput Comput Assist Interv 10:883–890PubMed Song Z, Awate SP, Licht DJ et al (2007) Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. Med Image Comput Comput Assist Interv 10:883–890PubMed
70.
go back to reference Kazemi K, Moghaddam HA, Grebe R et al (2007) A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results. Neuroimage 37:463–473PubMedCrossRef Kazemi K, Moghaddam HA, Grebe R et al (2007) A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results. Neuroimage 37:463–473PubMedCrossRef
71.
go back to reference Kazemi K, Ghadimi S, Abrishami-Moghaddam H et al (2008) Neonatal probabilistic models for brain, CSF and skull using T1-MRI data: preliminary results. Conf Proc IEEE Eng Med Biol Soc 2008:3892–3895PubMed Kazemi K, Ghadimi S, Abrishami-Moghaddam H et al (2008) Neonatal probabilistic models for brain, CSF and skull using T1-MRI data: preliminary results. Conf Proc IEEE Eng Med Biol Soc 2008:3892–3895PubMed
72.
go back to reference Mazziotta JC, Toga AW, Evans A et al (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 2:89–101PubMedCrossRef Mazziotta JC, Toga AW, Evans A et al (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 2:89–101PubMedCrossRef
73.
go back to reference Diedrichsen J, Balsters JH, Flavell J et al (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46PubMedCrossRef Diedrichsen J, Balsters JH, Flavell J et al (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46PubMedCrossRef
74.
go back to reference Shattuck DW, Mirza M, Adisetiyo V et al (2008) Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39:1064–1080PubMedCrossRef Shattuck DW, Mirza M, Adisetiyo V et al (2008) Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39:1064–1080PubMedCrossRef
75.
go back to reference Toga AW, Mazziotta JC (1995) Brain mapping: the methods, 2nd edn. Academic, San Diego Toga AW, Mazziotta JC (1995) Brain mapping: the methods, 2nd edn. Academic, San Diego
76.
77.
go back to reference Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRef Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRef
78.
go back to reference Holmes AP, Blair RC, Watson JD et al (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRef Holmes AP, Blair RC, Watson JD et al (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRef
79.
go back to reference Friston KJ, Frith CD, Liddle PF et al (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466PubMed Friston KJ, Frith CD, Liddle PF et al (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466PubMed
80.
go back to reference O’Shaughnessy ES, Berl MM, Moore EN et al (2008) Pediatric functional magnetic resonance imaging (fMRI): issues and applications. J Child Neurol 23:791–801PubMedCrossRef O’Shaughnessy ES, Berl MM, Moore EN et al (2008) Pediatric functional magnetic resonance imaging (fMRI): issues and applications. J Child Neurol 23:791–801PubMedCrossRef
81.
go back to reference Kocak M (2009) Advanced imaging in paediatric neuroradiology. Pediatr Radiol 39:S456–S463CrossRef Kocak M (2009) Advanced imaging in paediatric neuroradiology. Pediatr Radiol 39:S456–S463CrossRef
82.
go back to reference Mannerkoski MK, Heiskala HJ, Van Leemput K et al (2009) Subjects with intellectual disability and familial need for full-time special education show regional brain alterations: a voxel-based morphometry study. Pediatr Res 66:306–311PubMedCrossRef Mannerkoski MK, Heiskala HJ, Van Leemput K et al (2009) Subjects with intellectual disability and familial need for full-time special education show regional brain alterations: a voxel-based morphometry study. Pediatr Res 66:306–311PubMedCrossRef
83.
go back to reference de Jonge RC, Swart JF, Koomen I et al (2008) No structural cerebral differences between children with a history of bacterial meningitis and healthy siblings. Acta Paediatr 97:1390–1396PubMed de Jonge RC, Swart JF, Koomen I et al (2008) No structural cerebral differences between children with a history of bacterial meningitis and healthy siblings. Acta Paediatr 97:1390–1396PubMed
84.
go back to reference Guimaraes CA, Bonilha L, Franzon RC et al (2007) Distribution of regional gray matter abnormalities in a pediatric population with temporal lobe epilepsy and correlation with neuropsychological performance. Epilepsy Behav 11:558–566PubMedCrossRef Guimaraes CA, Bonilha L, Franzon RC et al (2007) Distribution of regional gray matter abnormalities in a pediatric population with temporal lobe epilepsy and correlation with neuropsychological performance. Epilepsy Behav 11:558–566PubMedCrossRef
85.
go back to reference Carmona S, Bassas N, Rovira M et al (2007) Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neurosci Lett 421:218–223PubMedCrossRef Carmona S, Bassas N, Rovira M et al (2007) Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neurosci Lett 421:218–223PubMedCrossRef
86.
go back to reference Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055PubMedCrossRef Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055PubMedCrossRef
87.
go back to reference Counsell SJ, Boardman JP (2005) Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. Semin Fetal Neonatal Med 10:403–410PubMed Counsell SJ, Boardman JP (2005) Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. Semin Fetal Neonatal Med 10:403–410PubMed
88.
go back to reference Tzarouchi LC, Astrakas LG, Xydis V et al (2009) Age-related grey matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153PubMedCrossRef Tzarouchi LC, Astrakas LG, Xydis V et al (2009) Age-related grey matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153PubMedCrossRef
89.
go back to reference Pell GS, Briellmann RS, Waites AB et al (2004) Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy. Neuroimage 21:707–713PubMedCrossRef Pell GS, Briellmann RS, Waites AB et al (2004) Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy. Neuroimage 21:707–713PubMedCrossRef
90.
go back to reference Snook L, Plewes C, Beaulieu C (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage 34:243–252PubMedCrossRef Snook L, Plewes C, Beaulieu C (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage 34:243–252PubMedCrossRef
91.
go back to reference Lee JE, Chung MK, Lazar M et al (2009) A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage 44:870–883PubMedCrossRef Lee JE, Chung MK, Lazar M et al (2009) A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage 44:870–883PubMedCrossRef
92.
go back to reference Komatsu H, Nagamitsu S, Ozono S et al (2009) Regional cerebral blood flow changes in early-onset anorexia nervosa before and after weight gain. Brain Dev Oct 27 [Epub ahead of print] Komatsu H, Nagamitsu S, Ozono S et al (2009) Regional cerebral blood flow changes in early-onset anorexia nervosa before and after weight gain. Brain Dev Oct 27 [Epub ahead of print]
93.
go back to reference Casanova R, Srikanth R, Baer A et al (2007) Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage 34:137–143PubMedCrossRef Casanova R, Srikanth R, Baer A et al (2007) Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage 34:137–143PubMedCrossRef
94.
go back to reference Chen K, Reiman EM, Huan Z et al (2009) Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method. Neuroimage 47:602–610PubMedCrossRef Chen K, Reiman EM, Huan Z et al (2009) Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method. Neuroimage 47:602–610PubMedCrossRef
95.
go back to reference Tzarouchi LC, Astrakas LG, Kontsiotis S et al (2009) Voxel-based morphometry and voxel-based relaxometry in Parkinsonian variant of multiple system atrophy. J Neuroimaging Jan 29 [Epub ahead of print] Tzarouchi LC, Astrakas LG, Kontsiotis S et al (2009) Voxel-based morphometry and voxel-based relaxometry in Parkinsonian variant of multiple system atrophy. J Neuroimaging Jan 29 [Epub ahead of print]
96.
go back to reference Hugenschmidt CE, Peiffer AM, Kraft RA et al (2008) Relating imaging indices of white matter integrity and volume in healthy older adults. Cereb Cortex 18:433–442PubMedCrossRef Hugenschmidt CE, Peiffer AM, Kraft RA et al (2008) Relating imaging indices of white matter integrity and volume in healthy older adults. Cereb Cortex 18:433–442PubMedCrossRef
97.
go back to reference Bartres-Faz D, Sole-Padulles C, Junque C et al (2009) Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biol Psychol 80:256–259PubMedCrossRef Bartres-Faz D, Sole-Padulles C, Junque C et al (2009) Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biol Psychol 80:256–259PubMedCrossRef
98.
99.
go back to reference Petersson KM, Nichols TE, Poline JB et al (1999) Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Philos Trans R Soc Lond B Biol Sci 354:1239–1260PubMedCrossRef Petersson KM, Nichols TE, Poline JB et al (1999) Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Philos Trans R Soc Lond B Biol Sci 354:1239–1260PubMedCrossRef
100.
go back to reference Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45:S163–S172PubMedCrossRef Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45:S163–S172PubMedCrossRef
101.
go back to reference Sommer FT, Wichert A (eds) (2003) Exploratory analysis and data modeling in functional neuroimaging. MIT Press, Cambridge Sommer FT, Wichert A (eds) (2003) Exploratory analysis and data modeling in functional neuroimaging. MIT Press, Cambridge
102.
go back to reference Ngan SC, Yacoub ES, Auffermann WF et al (2002) Node merging in Kohonen’s self-organizing mapping of fMRI data. Artif Intell Med 25:19–33PubMedCrossRef Ngan SC, Yacoub ES, Auffermann WF et al (2002) Node merging in Kohonen’s self-organizing mapping of fMRI data. Artif Intell Med 25:19–33PubMedCrossRef
103.
go back to reference Ardila A, Bernal B (2007) What can be localized in the brain? Toward a “factor” theory on brain organization of cognition. Int J Neurosci 117:935–969PubMedCrossRef Ardila A, Bernal B (2007) What can be localized in the brain? Toward a “factor” theory on brain organization of cognition. Int J Neurosci 117:935–969PubMedCrossRef
104.
go back to reference Papadakis NG, Zheng Y, Wilkinson ID (2003) Analysis of diffusion tensor magnetic resonance imaging data using principal component analysis. Phys Med Biol 48:N343–N350PubMedCrossRef Papadakis NG, Zheng Y, Wilkinson ID (2003) Analysis of diffusion tensor magnetic resonance imaging data using principal component analysis. Phys Med Biol 48:N343–N350PubMedCrossRef
105.
go back to reference Guo WY, Wu YT, Wu HM et al (2004) Toward normal perfusion after radiosurgery: perfusion MR Imaging with independent component analysis of brain arteriovenous malformations. AJNR 25:1636–1644PubMed Guo WY, Wu YT, Wu HM et al (2004) Toward normal perfusion after radiosurgery: perfusion MR Imaging with independent component analysis of brain arteriovenous malformations. AJNR 25:1636–1644PubMed
106.
go back to reference Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14:1454–1462PubMedCrossRef Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14:1454–1462PubMedCrossRef
107.
go back to reference Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14:1238–1243PubMedCrossRef Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14:1238–1243PubMedCrossRef
108.
go back to reference Davatzikos C (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 23:17–20PubMedCrossRef Davatzikos C (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 23:17–20PubMedCrossRef
109.
go back to reference Costafreda SG, David AS, Brammer MJ (2009) A parametric approach to voxel-based meta-analysis. Neuroimage 46:115–122PubMedCrossRef Costafreda SG, David AS, Brammer MJ (2009) A parametric approach to voxel-based meta-analysis. Neuroimage 46:115–122PubMedCrossRef
110.
go back to reference Turkeltaub PE, Eden GF, Jones KM et al (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780PubMedCrossRef Turkeltaub PE, Eden GF, Jones KM et al (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780PubMedCrossRef
111.
go back to reference Laird AR, Eickhoff SB, Kurth F et al (2009) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinformatics 3:23PubMed Laird AR, Eickhoff SB, Kurth F et al (2009) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinformatics 3:23PubMed
Metadata
Title
Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping
Authors
Loukas G. Astrakas
Maria I. Argyropoulou
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
Pediatric Radiology / Issue 12/2010
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-010-1677-8

Other articles of this Issue 12/2010

Pediatric Radiology 12/2010 Go to the issue

Hermes

Hermes