Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Sex differences in the shoulder joint position sense acuity: a cross-sectional study

Authors: Amir K. Vafadar, Julie N. Côté, Philippe S. Archambault

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

Work-related musculoskeletal disorders (WMSD) is the most expensive form of work disability. Female sex has been considered as an individual risk factor for the development of WMSD, specifically in the neck and shoulder region. One of the factors that might contribute to the higher injury rate in women is possible differences in neuromuscular control. Accordingly the purpose of this study was to estimate the effect of sex on shoulder joint position sense acuity (as a part of shoulder neuromuscular control) in healthy individuals.

Methods

Twenty-eight healthy participants, 14 females and 14 males were recruited for this study. To test position sense acuity, subjects were asked to flex their dominant shoulder to one of the three pre-defined angle ranges (low, mid and high-ranges) with eyes closed, hold their arm in that position for three seconds, go back to the starting position and then immediately replicate the same joint flexion angle, while the difference between the reproduced and original angle was taken as the measure of position sense error. The errors were measured using Vicon motion capture system. Subjects reproduced nine positions in total (3 ranges × 3 trials each).

Results

Calculation of absolute repositioning error (magnitude of error) showed no significant difference between men and women (p-value ≥ 0.05). However, the analysis of the direction of error (constant error) showed a significant difference between the sexes, as women tended to mostly overestimate the target, whereas men tended to both overestimate and underestimate the target (p-value ≤ 0.01, observed power = 0.79). The results also showed that men had a significantly more variable error, indicating more variability in their position sense, compared to women (p-value ≤ 0.05, observed power = 0.78).

Discussion

Differences observed in the constant JPS error suggest that men and women might use different neuromuscular control strategies in the upper limb. In addition, higher JPS variability observed in men might be one of the factors that could contribute to their lower rate of musculoskeletal disorders, compared to women.

Conclusions

The result of this study showed that shoulder position sense, as part of the neuromuscular control system, differs between men and women. This finding can help us better understand the reasons behind the higher rate of musculoskeletal disorders in women, especially in the working environments.
Literature
1.
go back to reference Punnett L, Wegman DH. Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2004;14(1):13–23.CrossRef Punnett L, Wegman DH. Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2004;14(1):13–23.CrossRef
2.
go back to reference Thiehoff R. Economic significance of work disability caused by musculoskeletal disorders. Orthopade. 2002;31(10):949–56.CrossRefPubMed Thiehoff R. Economic significance of work disability caused by musculoskeletal disorders. Orthopade. 2002;31(10):949–56.CrossRefPubMed
3.
go back to reference Picavet HS, Schouten JS. Musculoskeletal pain in the Netherlands: prevalences, consequences and risk groups, the DMC(3)-study. Pain. 2003;102(1-2):167–78.CrossRefPubMed Picavet HS, Schouten JS. Musculoskeletal pain in the Netherlands: prevalences, consequences and risk groups, the DMC(3)-study. Pain. 2003;102(1-2):167–78.CrossRefPubMed
4.
go back to reference Treaster DE, Burr D. Gender differences in prevalence of upper extremity musculoskeletal disorders. Ergonomics. 2004;47(5):495–526.CrossRefPubMed Treaster DE, Burr D. Gender differences in prevalence of upper extremity musculoskeletal disorders. Ergonomics. 2004;47(5):495–526.CrossRefPubMed
5.
go back to reference da Costa BR, Vieira ER. Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. Am J Ind Med. 2010;53(3):285–323.PubMed da Costa BR, Vieira ER. Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. Am J Ind Med. 2010;53(3):285–323.PubMed
6.
go back to reference Wahlstedt K, Norbäck D, Wieslander G, Skoglund L, Runeson R. Psychosocial and ergonomic factors, and their relation to musculoskeletal complaints in the Swedish workforce. Int J Occup Saf Ergon. 2010;16(3):311–21.CrossRefPubMed Wahlstedt K, Norbäck D, Wieslander G, Skoglund L, Runeson R. Psychosocial and ergonomic factors, and their relation to musculoskeletal complaints in the Swedish workforce. Int J Occup Saf Ergon. 2010;16(3):311–21.CrossRefPubMed
7.
go back to reference Larsson B, Søgaard K, Rosendal L. Work related neck–shoulder pain: a review on magnitude, risk factors, biochemical characteristics, clinical picture and preventive interventions. Best Pract Res Clin Rheumatol. 2007;21(3):447–63.CrossRefPubMed Larsson B, Søgaard K, Rosendal L. Work related neck–shoulder pain: a review on magnitude, risk factors, biochemical characteristics, clinical picture and preventive interventions. Best Pract Res Clin Rheumatol. 2007;21(3):447–63.CrossRefPubMed
8.
go back to reference Jones BH, Bovee MW, Harris 3rd JM, Cowan DN. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am J Sports Med. 1993;21(5):705–10.CrossRefPubMed Jones BH, Bovee MW, Harris 3rd JM, Cowan DN. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am J Sports Med. 1993;21(5):705–10.CrossRefPubMed
9.
go back to reference McCurdy SA, Schenker MB, Lassiter DV. Occupational injury and illness in the semiconductor manufacturing industry. Am J Ind Med. 1989;15(5):499–510.CrossRefPubMed McCurdy SA, Schenker MB, Lassiter DV. Occupational injury and illness in the semiconductor manufacturing industry. Am J Ind Med. 1989;15(5):499–510.CrossRefPubMed
10.
go back to reference Zwerling C, Sprince NL, Ryan J, Jones MP. Occupational injuries: comparing the rates of male and female postal workers. Am J Epidemiol. 1993;138(1):46–55.PubMed Zwerling C, Sprince NL, Ryan J, Jones MP. Occupational injuries: comparing the rates of male and female postal workers. Am J Epidemiol. 1993;138(1):46–55.PubMed
11.
go back to reference Cote JN. A critical review on physical factors and functional characteristics that may explain a sex/gender difference in work-related neck/shoulder disorders. Ergonomics. 2012;55(2):173–82.CrossRefPubMed Cote JN. A critical review on physical factors and functional characteristics that may explain a sex/gender difference in work-related neck/shoulder disorders. Ergonomics. 2012;55(2):173–82.CrossRefPubMed
12.
go back to reference Faber A, Hansen K, Christensen H. Muscle strength and aerobic capacity in a representative sample of employees with and without repetitive monotonous work. Int Arch Occup Environ Health. 2006;79(1):33–41.CrossRefPubMed Faber A, Hansen K, Christensen H. Muscle strength and aerobic capacity in a representative sample of employees with and without repetitive monotonous work. Int Arch Occup Environ Health. 2006;79(1):33–41.CrossRefPubMed
13.
go back to reference Esmail S, Bhambhani Y, Brintnell S. Gender differences in work performance on the Baltimore Therapeutic Equipment work simulator. The American journal of occupational therapy : official publication of the American Occupational Therapy Association. 1995;49(5):405–11.CrossRef Esmail S, Bhambhani Y, Brintnell S. Gender differences in work performance on the Baltimore Therapeutic Equipment work simulator. The American journal of occupational therapy : official publication of the American Occupational Therapy Association. 1995;49(5):405–11.CrossRef
14.
go back to reference Haward BM, Griffin MJ. Repeatability of grip strength and dexterity tests and the effects of age and gender. Int Arch Occup Environ Health. 2002;75(1-2):111–9.PubMed Haward BM, Griffin MJ. Repeatability of grip strength and dexterity tests and the effects of age and gender. Int Arch Occup Environ Health. 2002;75(1-2):111–9.PubMed
15.
go back to reference Vasavada AN, Danaraj J, Siegmund GP. Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J Biomech. 2008;41(1):114–21.CrossRefPubMed Vasavada AN, Danaraj J, Siegmund GP. Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J Biomech. 2008;41(1):114–21.CrossRefPubMed
16.
go back to reference Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62.CrossRefPubMed Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62.CrossRefPubMed
17.
go back to reference Merrill A, Guzman K, Miller SL. Gender differences in glenoid anatomy: an anatomic study. Surgical and radiologic anatomy : SRA. 2009;31(3):183–9.CrossRefPubMed Merrill A, Guzman K, Miller SL. Gender differences in glenoid anatomy: an anatomic study. Surgical and radiologic anatomy : SRA. 2009;31(3):183–9.CrossRefPubMed
18.
go back to reference Rodrigues PC, Vasconcelos O, Barreiros J, Barbosa R. Manual asymmetry in a complex coincidence-anticipation task: handedness and gender effects. Laterality. 2009;14(4):395–412.PubMed Rodrigues PC, Vasconcelos O, Barreiros J, Barbosa R. Manual asymmetry in a complex coincidence-anticipation task: handedness and gender effects. Laterality. 2009;14(4):395–412.PubMed
19.
go back to reference Rohr LE. Gender-specific movement strategies using a computer-pointing task. J Mot Behav. 2006;38(6):431–7.CrossRefPubMed Rohr LE. Gender-specific movement strategies using a computer-pointing task. J Mot Behav. 2006;38(6):431–7.CrossRefPubMed
20.
go back to reference Saucier D, Lisoway A, Green S, Elias L. Female advantage for object location memory in peripersonal but not extrapersonal space. J Int Neuropsychol Soc. 2007;13(4):683–6.CrossRefPubMed Saucier D, Lisoway A, Green S, Elias L. Female advantage for object location memory in peripersonal but not extrapersonal space. J Int Neuropsychol Soc. 2007;13(4):683–6.CrossRefPubMed
21.
go back to reference Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):71–9.PubMedPubMedCentral Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):71–9.PubMedPubMedCentral
22.
23.
go back to reference Sherrington C. The integrative action of the nervous system. Scribner’s Son: New York, NY; 1906. Sherrington C. The integrative action of the nervous system. Scribner’s Son: New York, NY; 1906.
24.
go back to reference Pedersen J, Lonn J, Hellstrom F, Djupsjobacka M, Johansson H. Localized muscle fatigue decreases the acuity of the movement sense in the human shoulder. Med Sci Sports Exerc. 1999;31(7):1047–52.CrossRefPubMed Pedersen J, Lonn J, Hellstrom F, Djupsjobacka M, Johansson H. Localized muscle fatigue decreases the acuity of the movement sense in the human shoulder. Med Sci Sports Exerc. 1999;31(7):1047–52.CrossRefPubMed
25.
go back to reference Bjorklund M, Crenshaw AG, Djupsjobacka M, Johansson H. Position sense acuity is diminished following repetitive low-intensity work to fatigue in a simulated occupational setting: a critical comment. Eur J Appl Physiol. 2003;88(4-5):485–6.CrossRefPubMed Bjorklund M, Crenshaw AG, Djupsjobacka M, Johansson H. Position sense acuity is diminished following repetitive low-intensity work to fatigue in a simulated occupational setting: a critical comment. Eur J Appl Physiol. 2003;88(4-5):485–6.CrossRefPubMed
26.
go back to reference Emery K, Cote JN. Repetitive arm motion-induced fatigue affects shoulder but not endpoint position sense. Exp Brain Res. 2012;216(4):553–64.CrossRefPubMed Emery K, Cote JN. Repetitive arm motion-induced fatigue affects shoulder but not endpoint position sense. Exp Brain Res. 2012;216(4):553–64.CrossRefPubMed
27.
go back to reference Henmi S, Yonenobu K, Masatomi T, Oda K. A biomechanical study of activities of daily living using neck and upper limbs with an optical three-dimensional motion analysis system. Mod Rheumatol. 2006;16(5):289–93.CrossRefPubMed Henmi S, Yonenobu K, Masatomi T, Oda K. A biomechanical study of activities of daily living using neck and upper limbs with an optical three-dimensional motion analysis system. Mod Rheumatol. 2006;16(5):289–93.CrossRefPubMed
28.
go back to reference Angyan L, Antall C, Angyan Z. Reproduction of reaching movements to memorized targets in the lack of visual control. Acta Physiol Hung. 2007;94(3):179–82.CrossRefPubMed Angyan L, Antall C, Angyan Z. Reproduction of reaching movements to memorized targets in the lack of visual control. Acta Physiol Hung. 2007;94(3):179–82.CrossRefPubMed
29.
go back to reference Janwantanakul P, Magarey ME, Jones MA, Dansie BR. Variation in shoulder position sense at mid and extreme range of motion. Arch Phys Med Rehabil. 2001;82(6):840–4.CrossRefPubMed Janwantanakul P, Magarey ME, Jones MA, Dansie BR. Variation in shoulder position sense at mid and extreme range of motion. Arch Phys Med Rehabil. 2001;82(6):840–4.CrossRefPubMed
30.
go back to reference Rossetti Y, Meckler C, Prablanc C. Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures. Exp Brain Res. 1994;99(1):131–6.CrossRefPubMed Rossetti Y, Meckler C, Prablanc C. Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures. Exp Brain Res. 1994;99(1):131–6.CrossRefPubMed
31.
go back to reference Vafadar AK, Cote JN, Archambault PS. The effect of muscle fatigue on position sense in an upper limb multi-joint task. Mot Control. 2012;16(2):265–83.CrossRef Vafadar AK, Cote JN, Archambault PS. The effect of muscle fatigue on position sense in an upper limb multi-joint task. Mot Control. 2012;16(2):265–83.CrossRef
32.
go back to reference Suprak DN, Osternig LR, van Donkelaar P, Karduna AR. Shoulder joint position sense improves with elevation angle in a novel, unconstrained task. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2006;24(3):559–68.CrossRef Suprak DN, Osternig LR, van Donkelaar P, Karduna AR. Shoulder joint position sense improves with elevation angle in a novel, unconstrained task. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2006;24(3):559–68.CrossRef
34.
go back to reference Punnett L, Herbert R. Work-related musculoskeletal disorders: Is there a gender differential, and if so, what does it mean? In: Goldman M, Hatch M, editors. Women and Health. San Diego, CA: Academic Press; 2000. Punnett L, Herbert R. Work-related musculoskeletal disorders: Is there a gender differential, and if so, what does it mean? In: Goldman M, Hatch M, editors. Women and Health. San Diego, CA: Academic Press; 2000.
35.
go back to reference Latash ML, Scholz JP, Schoner G. Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev. 2002;30(1):26–31.CrossRefPubMed Latash ML, Scholz JP, Schoner G. Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev. 2002;30(1):26–31.CrossRefPubMed
36.
37.
go back to reference Mathiassen SE, Moller T, Forsman M. Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics. 2003;46(8):800–24.CrossRefPubMed Mathiassen SE, Moller T, Forsman M. Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics. 2003;46(8):800–24.CrossRefPubMed
38.
go back to reference Stergiou N, Harbourne R, Cavanaugh J. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther. 2006;30(3):120–9.CrossRefPubMed Stergiou N, Harbourne R, Cavanaugh J. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther. 2006;30(3):120–9.CrossRefPubMed
39.
go back to reference Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Exp Brain Res. 2008;185(4):689–98.CrossRefPubMed Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Exp Brain Res. 2008;185(4):689–98.CrossRefPubMed
40.
go back to reference Svendsen JH, Madeleine P. Amount and structure of force variability during short, ramp and sustained contractions in males and females. Hum Mov Sci. 2010;29(1):35–47.CrossRefPubMed Svendsen JH, Madeleine P. Amount and structure of force variability during short, ramp and sustained contractions in males and females. Hum Mov Sci. 2010;29(1):35–47.CrossRefPubMed
41.
go back to reference Fedorowich L, Emery K, Gervasi B, Cote JN. Gender differences in neck/shoulder muscular patterns in response to repetitive motion induced fatigue. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2013;23(5):1183–9.CrossRef Fedorowich L, Emery K, Gervasi B, Cote JN. Gender differences in neck/shoulder muscular patterns in response to repetitive motion induced fatigue. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2013;23(5):1183–9.CrossRef
42.
go back to reference Srinivasan D, Mathiassen SE. Motor variability in occupational health and performance. Clinical biomechanics. 2012;27(10):979–93.CrossRefPubMed Srinivasan D, Mathiassen SE. Motor variability in occupational health and performance. Clinical biomechanics. 2012;27(10):979–93.CrossRefPubMed
43.
go back to reference Palmerud G, Sporrong H, Herberts P, Kadefors R. Consequences of trapezius relaxation on the distribution of shoulder muscle forces: an electromyographic study. J Electromyogr Kinesiol. 1998;8(3):185–93.CrossRefPubMed Palmerud G, Sporrong H, Herberts P, Kadefors R. Consequences of trapezius relaxation on the distribution of shoulder muscle forces: an electromyographic study. J Electromyogr Kinesiol. 1998;8(3):185–93.CrossRefPubMed
44.
go back to reference Samani A, Holtermann A, Sogaard K, Madeleine P. Active biofeedback changes the spatial distribution of upper trapezius muscle activity during computer work. Eur J Appl Physiol. 2010;110(2):415–23.CrossRefPubMed Samani A, Holtermann A, Sogaard K, Madeleine P. Active biofeedback changes the spatial distribution of upper trapezius muscle activity during computer work. Eur J Appl Physiol. 2010;110(2):415–23.CrossRefPubMed
Metadata
Title
Sex differences in the shoulder joint position sense acuity: a cross-sectional study
Authors
Amir K. Vafadar
Julie N. Côté
Philippe S. Archambault
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0731-y

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue