Skip to main content
Top
Published in: Journal of Anesthesia 5/2016

01-10-2016 | Original Article

Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model

Authors: Javier Casanova, Carlos Simon, Elena Vara, Guillermo Sanchez, Lisa Rancan, Selma Abubakra, Alberto Calvo, Francisco Jose Gonzalez, Ignacio Garutti

Published in: Journal of Anesthesia | Issue 5/2016

Login to get access

Abstract

Purpose

The glycocalyx is a glycoprotein-polysaccaride layer covering the endothelium luminal surface, and plays a key regulatory role in several endothelial functions. Lung ischemia reperfusion (IR) is a clinical entity that occurs in everyday thoracic surgery and causes glycocalix destruction and a florid local and systemic immune response. Moreover, sevoflurane is able to modulate the inflammatory response triggered by IR lung injury. In this study, we evaluated the protective effects of sevoflurane on the pulmonary endothelial glycocalyx in an in-vivo lung autotransplant model in pigs.

Methods

Sixteen Large White pigs underwent pneumonectomy plus lung autotransplant. They were divided into two groups depending on the hypnotic agent received (propofol or anesthetic preconditioning with sevoflurane). Glycocalyx components (syndecan-1 and heparan sulphate), cathepsin B, chemokines (MCP-1, MIP-1, and MIP-2) and adhesion molecules (VCAM and ICAM-1) were measured at four different timepoints using porcine-specific enzyme-linked immunosorbent assay (ELISA) kits.

Results

There were no differences between groups in weight or in surgical and one-lung ventilation time. Greater glycocalyx destruction and higher chemokine and adhesion molecule expression were observed in the group that did not receive sevoflurane. Heparan sulphate and serum syndecan levels were higher in the propofol group (P < 0.0001) after reperfusion, as was cathepsin B activity (P < 0.015). MCP-1, MIP-1, MIP-2, VCAM, and ICAM-1 levels were also higher in the propofol group (P < 0.006).

Conclusion

Sevoflurane preconditioning protects pulmonary glycocalyx and reduces expression of leukocyte chemokines in an in-vivo model of pulmonary IR.
Literature
2.
go back to reference Bennett HS, Luft JH, Hampton JC. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959;196(2):381–90.PubMed Bennett HS, Luft JH, Hampton JC. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959;196(2):381–90.PubMed
3.
go back to reference O’Callaghan R, Job KM, Dull RO, Hlady V. Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L353–60.CrossRefPubMedPubMedCentral O’Callaghan R, Job KM, Dull RO, Hlady V. Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L353–60.CrossRefPubMedPubMedCentral
4.
go back to reference Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun. 2010;34(1):45–54.CrossRefPubMed Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun. 2010;34(1):45–54.CrossRefPubMed
5.
go back to reference Klinke A, Nussbaum C, Kubala L, Friedrichs K, Rudolph TK, Rudolph V. Myeloperoxidase attracts neutrophils by physical forces. Blood. 2011;117(4):1350–8.CrossRefPubMed Klinke A, Nussbaum C, Kubala L, Friedrichs K, Rudolph TK, Rudolph V. Myeloperoxidase attracts neutrophils by physical forces. Blood. 2011;117(4):1350–8.CrossRefPubMed
6.
go back to reference Cioffi DL, Pandey S, Alvarez DF, Cioffi EA. Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1067–77.CrossRefPubMedPubMedCentral Cioffi DL, Pandey S, Alvarez DF, Cioffi EA. Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1067–77.CrossRefPubMedPubMedCentral
7.
go back to reference Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol (1985). 2001;91(4):1487–500. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol (1985). 2001;91(4):1487–500.
8.
go back to reference Zharikov SI, Sigova AA, Chen S, Bubb MR, Block ER. Cytoskeletal regulation of the l-arginine/NO pathway in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L465–73.PubMed Zharikov SI, Sigova AA, Chen S, Bubb MR, Block ER. Cytoskeletal regulation of the l-arginine/NO pathway in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L465–73.PubMed
9.
go back to reference Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87(2):300–10.CrossRefPubMed Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87(2):300–10.CrossRefPubMed
10.
go back to reference Ivanov AN, Puchinyan DM. Norkin IA. Vascular endothelial Barrier Function. Usp Fiziol Nauk. 2015;46(2):72–96.PubMed Ivanov AN, Puchinyan DM. Norkin IA. Vascular endothelial Barrier Function. Usp Fiziol Nauk. 2015;46(2):72–96.PubMed
11.
go back to reference van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med. 2012;52(8):1382–402.CrossRefPubMed van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med. 2012;52(8):1382–402.CrossRefPubMed
12.
go back to reference Monahan LJ. Acute respiratory distress syndrome. Curr Probl Pediatr Adolesc Health Care. 2013;43(10):278–84.CrossRefPubMed Monahan LJ. Acute respiratory distress syndrome. Curr Probl Pediatr Adolesc Health Care. 2013;43(10):278–84.CrossRefPubMed
13.
go back to reference Nettelbladt O, Hallgren R. Hyaluronan (hyaluronic acid) in bronchoalveolar lavage fluid during the development of bleomycin-induced alveolitis in the rat. Am Rev Respir Dis. 1989;140(4):1028–32.CrossRefPubMed Nettelbladt O, Hallgren R. Hyaluronan (hyaluronic acid) in bronchoalveolar lavage fluid during the development of bleomycin-induced alveolitis in the rat. Am Rev Respir Dis. 1989;140(4):1028–32.CrossRefPubMed
14.
go back to reference Liu YY, Lee CH, Dedaj R, Zhao H, Mrabat H, Sheidlin. High-molecular-weight hyaluronan—a possible new treatment for sepsis-induced lung injury: a preclinical study in mechanically ventilated rats. Crit Care. 2008;12(4):R102.CrossRefPubMedPubMedCentral Liu YY, Lee CH, Dedaj R, Zhao H, Mrabat H, Sheidlin. High-molecular-weight hyaluronan—a possible new treatment for sepsis-induced lung injury: a preclinical study in mechanically ventilated rats. Crit Care. 2008;12(4):R102.CrossRefPubMedPubMedCentral
15.
go back to reference Bedirli N, Demirtas CY, Akkaya T, Salman B, Alper M, Bedirli A. Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res. 2012;178(1):e17–23.CrossRefPubMed Bedirli N, Demirtas CY, Akkaya T, Salman B, Alper M, Bedirli A. Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res. 2012;178(1):e17–23.CrossRefPubMed
16.
go back to reference Jiang T, Liu Y, Ma M, Zong L, Yiliyaer X, Zhang H. The role of remote ischemic preconditioning in ischemia-reperfusion injury in rabbits with transplanted lung. Clin Lab. 2015;61(5–6):481–6.PubMed Jiang T, Liu Y, Ma M, Zong L, Yiliyaer X, Zhang H. The role of remote ischemic preconditioning in ischemia-reperfusion injury in rabbits with transplanted lung. Clin Lab. 2015;61(5–6):481–6.PubMed
17.
go back to reference Annecke T, Chappell D, Chen C, Jacob M, Welsch U, Sommerhoff CP. Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br J Anaesth. 2010;104(4):414–21.CrossRefPubMed Annecke T, Chappell D, Chen C, Jacob M, Welsch U, Sommerhoff CP. Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br J Anaesth. 2010;104(4):414–21.CrossRefPubMed
18.
go back to reference Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115(3):483–91.CrossRefPubMed Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115(3):483–91.CrossRefPubMed
19.
go back to reference Simon Adiego C, Gonzalez-Casaurran G, Azcarate Perea L, Isea Vina J, Vara Ameigeiras E, Garcia Martin C, Casanova J. Experimental Swine lung autotransplant model to study lung ischemia-reperfusion injury. Arch Bronconeumol. 2011;47(6):283–9.CrossRefPubMed Simon Adiego C, Gonzalez-Casaurran G, Azcarate Perea L, Isea Vina J, Vara Ameigeiras E, Garcia Martin C, Casanova J. Experimental Swine lung autotransplant model to study lung ischemia-reperfusion injury. Arch Bronconeumol. 2011;47(6):283–9.CrossRefPubMed
20.
go back to reference Casanova J, Garutti I, Simon C, Giraldez A, Martin B, Gonzalez G. The effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg. 2011;113(4):742–8.CrossRefPubMed Casanova J, Garutti I, Simon C, Giraldez A, Martin B, Gonzalez G. The effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg. 2011;113(4):742–8.CrossRefPubMed
21.
go back to reference Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121(4):1269–77.CrossRefPubMed Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121(4):1269–77.CrossRefPubMed
22.
go back to reference de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511.CrossRefPubMed de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511.CrossRefPubMed
23.
go back to reference Kennedy TP, Rao NV, Hopkins C, Pennington L, Tolley E, Hoidal JR. Role of reactive oxygen species in reperfusion injury of the rabbit lung. J Clin Invest. 1989;83(4):1326–35.CrossRefPubMedPubMedCentral Kennedy TP, Rao NV, Hopkins C, Pennington L, Tolley E, Hoidal JR. Role of reactive oxygen species in reperfusion injury of the rabbit lung. J Clin Invest. 1989;83(4):1326–35.CrossRefPubMedPubMedCentral
24.
go back to reference Karck M, Haverich A. Nifedipine and diltiazem reduce pulmonary edema formation during postischemic reperfusion of the rabbit lung. Res Exp Med (Berl). 1992;192(2):137–44.CrossRefPubMed Karck M, Haverich A. Nifedipine and diltiazem reduce pulmonary edema formation during postischemic reperfusion of the rabbit lung. Res Exp Med (Berl). 1992;192(2):137–44.CrossRefPubMed
25.
go back to reference Collins SR, Blank RS, Deatherage LS, Dull RO. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117(3):664–74.CrossRefPubMedPubMedCentral Collins SR, Blank RS, Deatherage LS, Dull RO. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117(3):664–74.CrossRefPubMedPubMedCentral
26.
go back to reference Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009;83(2):388–96.CrossRefPubMed Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009;83(2):388–96.CrossRefPubMed
27.
go back to reference Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res. 2009;104(11):1313–7.CrossRefPubMed Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res. 2009;104(11):1313–7.CrossRefPubMed
28.
go back to reference Lucchinetti E, Ambrosio S, Aguirre J, Herrmann P, Harter L, Keel M. Sevoflurane inhalation at sedative concentrations provides endothelial protection against ischemia-reperfusion injury in humans. Anesthesiology. 2007;106(2):262–8.CrossRefPubMed Lucchinetti E, Ambrosio S, Aguirre J, Herrmann P, Harter L, Keel M. Sevoflurane inhalation at sedative concentrations provides endothelial protection against ischemia-reperfusion injury in humans. Anesthesiology. 2007;106(2):262–8.CrossRefPubMed
29.
go back to reference Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.CrossRefPubMed Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.CrossRefPubMed
30.
go back to reference Lee HT, Kim M, Jan M, Emala CW. Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Am J Physiol Renal Physiol. 2006;291(1):F67–78.CrossRefPubMed Lee HT, Kim M, Jan M, Emala CW. Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Am J Physiol Renal Physiol. 2006;291(1):F67–78.CrossRefPubMed
31.
go back to reference Rehm M, Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100(5):1211–23.CrossRefPubMed Rehm M, Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100(5):1211–23.CrossRefPubMed
32.
go back to reference Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.CrossRefPubMedPubMedCentral Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.CrossRefPubMedPubMedCentral
33.
go back to reference Luo X, Miao CH, Ge BX, Jiang H. Effects of isoflurane, sevoflurane and desflurane on expression of ICAM-1 and VCAM-1 in LPS-induced rat lung microvascular endothelial cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2010;39(5):464–9.PubMed Luo X, Miao CH, Ge BX, Jiang H. Effects of isoflurane, sevoflurane and desflurane on expression of ICAM-1 and VCAM-1 in LPS-induced rat lung microvascular endothelial cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2010;39(5):464–9.PubMed
34.
go back to reference Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrix metalloprotease activity with doxycycline. Microcirculation. 2009;16(8):657–66.CrossRefPubMed Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrix metalloprotease activity with doxycycline. Microcirculation. 2009;16(8):657–66.CrossRefPubMed
35.
go back to reference Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs l-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol. 2005;6(9):902–10.CrossRefPubMed Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs l-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol. 2005;6(9):902–10.CrossRefPubMed
36.
go back to reference Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.CrossRefPubMed Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.CrossRefPubMed
37.
go back to reference Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell. 1997;91(3):385–95.CrossRefPubMed Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell. 1997;91(3):385–95.CrossRefPubMed
38.
go back to reference Suter D, Spahn DR, Blumenthal S, Reyes L, Booy C, Z’Graggen BR. The immunomodulatory effect of sevoflurane in endotoxin-injured alveolar epithelial cells. Anesth Analg. 2007;104(3):638–45.CrossRefPubMed Suter D, Spahn DR, Blumenthal S, Reyes L, Booy C, Z’Graggen BR. The immunomodulatory effect of sevoflurane in endotoxin-injured alveolar epithelial cells. Anesth Analg. 2007;104(3):638–45.CrossRefPubMed
Metadata
Title
Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model
Authors
Javier Casanova
Carlos Simon
Elena Vara
Guillermo Sanchez
Lisa Rancan
Selma Abubakra
Alberto Calvo
Francisco Jose Gonzalez
Ignacio Garutti
Publication date
01-10-2016
Publisher
Springer Japan
Published in
Journal of Anesthesia / Issue 5/2016
Print ISSN: 0913-8668
Electronic ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-016-2195-0

Other articles of this Issue 5/2016

Journal of Anesthesia 5/2016 Go to the issue