Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Seroma change during magnetic resonance imaging-guided partial breast irradiation and its clinical implications

Authors: Seung Hyuck Jeon, Kyung Hwan Shin, So-Yeon Park, Jung-in Kim, Jong Min Park, Jin Ho Kim, Eui Kyu Chie, Hong-Gyun Wu

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

To investigate the patterns of post-lumpectomy seroma volume (SV) change and related clinical factors to determine the benefits of adaptive planning in magnetic resonance imaging (MRI)-guided partial breast irradiation (PBI).

Methods

MRI data obtained from 37 women with early breast cancer acquired at simulation and at the 1st, 6th, and 10th fractions were analyzed. The planning target volume (PTV) was defined as unequal margins of 10–15 mm added according to the directional surgical margin status of each seroma. Treatment was performed using a 0.35 T MRI-guided radiotherapy system. Univariate analysis was performed to assess the correlations between SV change rate and clinical factors. Seroma and PTV for adaptive planning were based on the images obtained at the 6th fraction.

Results

The average time intervals between surgery-simulation, simulation-1st, 1st-6th, and 6th-10th fractions were 23.1, 8.5, 7.2, and 5.9 days, respectively. Of the 37 patients, 33 exhibited decreased SV over the treatment period. The mean SV of these 33 patients decreased from 100% at simulation to 60, 48, and 40% at each MRI scan. In most cases (26/33), the logarithm of SV was inversely proportional to the elapsed time from surgery (R 2 > 0.90, Pearson’s correlation test). The volume of spared normal tissue from adaptive radiotherapy was proportional to the absolute change in SV (R 2 = 0.89, Pearson’s correlation test).

Conclusion

Seromas exhibit exponential shrinkage over the course of PBI. In patients receiving PBI, frequent monitoring of SV could be helpful in decision-making regarding adaptive planning, especially those with a large seroma.
Literature
1.
go back to reference Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Darby S, McGale P, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.CrossRef Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Darby S, McGale P, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.CrossRef
2.
go back to reference Kim KS, Shin KH, Choi N, et al. Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery. Radiat Oncol J. 2016;34(2):81–7.CrossRefPubMedPubMedCentral Kim KS, Shin KH, Choi N, et al. Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery. Radiat Oncol J. 2016;34(2):81–7.CrossRefPubMedPubMedCentral
3.
go back to reference Vaidya JS, Bulsara M, Wenz F, et al. Reduced Mortality With Partial-Breast Irradiation for Early Breast Cancer: A Meta-Analysis of Randomized Trials. Int J Radiat Oncol Biol Phys. 2016;96(2):259–65.CrossRefPubMed Vaidya JS, Bulsara M, Wenz F, et al. Reduced Mortality With Partial-Breast Irradiation for Early Breast Cancer: A Meta-Analysis of Randomized Trials. Int J Radiat Oncol Biol Phys. 2016;96(2):259–65.CrossRefPubMed
4.
go back to reference Polgár C, Fodor J, Major T, et al. Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma--5-year results of a randomized trial. Int J Radiat Oncol Biol Phys. 2007;69(3):694–702.CrossRefPubMed Polgár C, Fodor J, Major T, et al. Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma--5-year results of a randomized trial. Int J Radiat Oncol Biol Phys. 2007;69(3):694–702.CrossRefPubMed
5.
go back to reference Strnad V, Ott OJ, Hildebrandt G, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387(10015):229–38.CrossRefPubMed Strnad V, Ott OJ, Hildebrandt G, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387(10015):229–38.CrossRefPubMed
6.
go back to reference Livi L, Meattini I, Marrazzo L, et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur J Cancer. 2015;51(4):451–63.CrossRefPubMed Livi L, Meattini I, Marrazzo L, et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur J Cancer. 2015;51(4):451–63.CrossRefPubMed
7.
go back to reference Correa C, Harris EE, Leonardi MC, et al. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pract Radiat Oncol. 2016. doi:10.1016/j.prro.2016.09.007 [Epub ahead of print].PubMed Correa C, Harris EE, Leonardi MC, et al. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pract Radiat Oncol. 2016. doi:10.​1016/​j.​prro.​2016.​09.​007 [Epub ahead of print].PubMed
8.
go back to reference Kirby AM, Coles CE, Yarnold JR. Target volume definition for external beam partial breast radiotherapy: clinical, pathological and technical studies informing current approaches. Radiother Oncol. 2010;94(3):255–63.CrossRefPubMed Kirby AM, Coles CE, Yarnold JR. Target volume definition for external beam partial breast radiotherapy: clinical, pathological and technical studies informing current approaches. Radiother Oncol. 2010;94(3):255–63.CrossRefPubMed
9.
go back to reference Major T, Gutiérrez C, Guix B, et al. Recommendations from GEC ESTRO Breast Cancer Working Group (II): Target definition and target delineation for accelerated or boost partial breast irradiation using multicatheter interstitial brachytherapy after breast conserving open cavity surgery. Radiother Oncol. 2016;118(1):199–204.CrossRefPubMed Major T, Gutiérrez C, Guix B, et al. Recommendations from GEC ESTRO Breast Cancer Working Group (II): Target definition and target delineation for accelerated or boost partial breast irradiation using multicatheter interstitial brachytherapy after breast conserving open cavity surgery. Radiother Oncol. 2016;118(1):199–204.CrossRefPubMed
10.
go back to reference den Hartogh MD, van den Bongard HJ, Davidson MT, et al. Full-thickness closure in breast-conserving surgery: the impact on radiotherapy target definition for boost and partial breast irradiation. A multimodality image evaluation. Ann Surg Oncol. 2014;21(12):3774–9.CrossRef den Hartogh MD, van den Bongard HJ, Davidson MT, et al. Full-thickness closure in breast-conserving surgery: the impact on radiotherapy target definition for boost and partial breast irradiation. A multimodality image evaluation. Ann Surg Oncol. 2014;21(12):3774–9.CrossRef
11.
go back to reference Sharma R, Spierer M, Mutyala S, et al. Change in seroma volume during whole-breast radiation therapy. Int J Radiat Oncol Biol Phys. 2009;75(1):89–93.CrossRefPubMed Sharma R, Spierer M, Mutyala S, et al. Change in seroma volume during whole-breast radiation therapy. Int J Radiat Oncol Biol Phys. 2009;75(1):89–93.CrossRefPubMed
12.
go back to reference Kader HA, Truong PT, Pai R, et al. When is CT-based postoperative seroma most useful to plan partial breast radiotherapy? Evaluation of clinical factors affecting seroma volume and clarity. Int J Radiat Oncol Biol Phys. 2008;72(4):1064–9.CrossRefPubMed Kader HA, Truong PT, Pai R, et al. When is CT-based postoperative seroma most useful to plan partial breast radiotherapy? Evaluation of clinical factors affecting seroma volume and clarity. Int J Radiat Oncol Biol Phys. 2008;72(4):1064–9.CrossRefPubMed
13.
go back to reference Yang TJ, Elkhuizen PH, Minkema D, et al. Clinical factors associated with seroma volume reduction in breast-Conserving Therapy for early-stage breast cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2010;76(5):1325–32.CrossRefPubMed Yang TJ, Elkhuizen PH, Minkema D, et al. Clinical factors associated with seroma volume reduction in breast-Conserving Therapy for early-stage breast cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2010;76(5):1325–32.CrossRefPubMed
14.
go back to reference Cho H, Kim C. Volumetric changes in the lumpectomy cavity during whole breast irradiation after breast conserving surgery. Radiat Oncol J. 2011;29(4):277–82.CrossRefPubMedPubMedCentral Cho H, Kim C. Volumetric changes in the lumpectomy cavity during whole breast irradiation after breast conserving surgery. Radiat Oncol J. 2011;29(4):277–82.CrossRefPubMedPubMedCentral
15.
go back to reference Prendergast B, Indelicato DJ, Grobmyer SR, et al. The dynamic tumor bed: volumetric changes in the lumpectomy cavity during breast-conserving therapy. Int J Radiat Oncol Biol Phys. 2009;74(3):695–701.CrossRefPubMed Prendergast B, Indelicato DJ, Grobmyer SR, et al. The dynamic tumor bed: volumetric changes in the lumpectomy cavity during breast-conserving therapy. Int J Radiat Oncol Biol Phys. 2009;74(3):695–701.CrossRefPubMed
16.
go back to reference Tersteeg RJ, Roesink JM, Albregts M, et al. Changes in excision cavity volume: prediction of the reduction in absolute volume during breast irradiation. Int J Radiat Oncol Biol Phys. 2009;74(4):1181–5.CrossRefPubMed Tersteeg RJ, Roesink JM, Albregts M, et al. Changes in excision cavity volume: prediction of the reduction in absolute volume during breast irradiation. Int J Radiat Oncol Biol Phys. 2009;74(4):1181–5.CrossRefPubMed
17.
go back to reference Yue NJ, Haffty BG, Kearney T, et al. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy. Med Phys. 2013;40(2):021717.CrossRefPubMed Yue NJ, Haffty BG, Kearney T, et al. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy. Med Phys. 2013;40(2):021717.CrossRefPubMed
18.
go back to reference Alderliesten T, den Hollander S, Yang TJ, et al. Dosimetric impact of post-operative seroma reduction during radiotherapy after breast-conserving surgery. Radiother Oncol. 2011;100(2):265–70.CrossRefPubMed Alderliesten T, den Hollander S, Yang TJ, et al. Dosimetric impact of post-operative seroma reduction during radiotherapy after breast-conserving surgery. Radiother Oncol. 2011;100(2):265–70.CrossRefPubMed
19.
go back to reference Hurkmans CW, Dijckmans I, Reijnen M, et al. Adaptive radiation therapy for breast IMRT-simultaneously integrated boost: three-year clinical experience. Radiother Oncol. 2012;103(2):183–7.CrossRefPubMed Hurkmans CW, Dijckmans I, Reijnen M, et al. Adaptive radiation therapy for breast IMRT-simultaneously integrated boost: three-year clinical experience. Radiother Oncol. 2012;103(2):183–7.CrossRefPubMed
20.
go back to reference Chen X, Qiao Q, DeVries A, et al. Adaptive replanning to account for lumpectomy cavity change in sequential boost after whole-breast irradiation. Int J Radiat Oncol Biol Phys. 2014;90(5):1208–15.CrossRefPubMed Chen X, Qiao Q, DeVries A, et al. Adaptive replanning to account for lumpectomy cavity change in sequential boost after whole-breast irradiation. Int J Radiat Oncol Biol Phys. 2014;90(5):1208–15.CrossRefPubMed
21.
go back to reference Mohiuddin MM, Nichols EM, Marter KJ, et al. Decrease of the lumpectomy cavity volume after whole-breast irradiation affects small field boost planning. Med Dosim. 2012;37(3):339–43.CrossRefPubMed Mohiuddin MM, Nichols EM, Marter KJ, et al. Decrease of the lumpectomy cavity volume after whole-breast irradiation affects small field boost planning. Med Dosim. 2012;37(3):339–43.CrossRefPubMed
22.
go back to reference Huang W, Currey A, Chen X, et al. A comparison of lumpectomy cavity delineations between use of magnetic resonance imaging and computed tomography acquired with patient in prone position for radiation therapy planning of breast cancer. Int J Radiat Oncol Biol Phys. 2016;94(4):832–40.CrossRefPubMed Huang W, Currey A, Chen X, et al. A comparison of lumpectomy cavity delineations between use of magnetic resonance imaging and computed tomography acquired with patient in prone position for radiation therapy planning of breast cancer. Int J Radiat Oncol Biol Phys. 2016;94(4):832–40.CrossRefPubMed
23.
go back to reference Landis DM, Luo W, Song J, et al. Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity. Int J Radiat Oncol Biol Phys. 2007;67(5):1299–308.CrossRefPubMed Landis DM, Luo W, Song J, et al. Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity. Int J Radiat Oncol Biol Phys. 2007;67(5):1299–308.CrossRefPubMed
24.
go back to reference Whipp EC, Halliwell M. Magnetic resonance imaging appearance in the postoperative breast: The clinical target volume-tumor and its relationship to the chest wall. Int J Radiat Oncol Biol Phys. 2008;72(1):49–57.CrossRefPubMed Whipp EC, Halliwell M. Magnetic resonance imaging appearance in the postoperative breast: The clinical target volume-tumor and its relationship to the chest wall. Int J Radiat Oncol Biol Phys. 2008;72(1):49–57.CrossRefPubMed
25.
go back to reference Moon SH, Shin KH, Kim TH, et al. Dosimetric comparison of four different external beam partial breast irradiation techniques: three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, helical tomotherapy, and proton beam therapy. Radiother Oncol. 2009;90(1):66–73.CrossRefPubMed Moon SH, Shin KH, Kim TH, et al. Dosimetric comparison of four different external beam partial breast irradiation techniques: three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, helical tomotherapy, and proton beam therapy. Radiother Oncol. 2009;90(1):66–73.CrossRefPubMed
26.
go back to reference Chang JH, Lee NK, Kim JY, et al. Phase II trial of proton beam accelerated partial breast irradiation in breast cancer. Radiother Oncol. 2013;108(2):209–14.CrossRefPubMed Chang JH, Lee NK, Kim JY, et al. Phase II trial of proton beam accelerated partial breast irradiation in breast cancer. Radiother Oncol. 2013;108(2):209–14.CrossRefPubMed
Metadata
Title
Seroma change during magnetic resonance imaging-guided partial breast irradiation and its clinical implications
Authors
Seung Hyuck Jeon
Kyung Hwan Shin
So-Yeon Park
Jung-in Kim
Jong Min Park
Jin Ho Kim
Eui Kyu Chie
Hong-Gyun Wu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0843-7

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue