Skip to main content
Top
Published in: Journal of Digital Imaging 4/2013

01-08-2013

Semi-automatic Segmentation of Brain Tumors Using Population and Individual Information

Authors: Yao Wu, Wei Yang, Jun Jiang, Shuanqian Li, Qianjin Feng, Wufan Chen

Published in: Journal of Imaging Informatics in Medicine | Issue 4/2013

Login to get access

Abstract

Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.
Literature
1.
go back to reference Weizman L, et al: Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 16:177–188, 2012PubMedCrossRef Weizman L, et al: Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 16:177–188, 2012PubMedCrossRef
2.
go back to reference Akselrod-Ballin A, et al: Automatic segmentation and classification of multiple sclerosis in multichannel MRI. IEEE Trans Biomed Eng 56:2461–2469, 2009PubMedCrossRef Akselrod-Ballin A, et al: Automatic segmentation and classification of multiple sclerosis in multichannel MRI. IEEE Trans Biomed Eng 56:2461–2469, 2009PubMedCrossRef
3.
go back to reference Garcia-Lorenzo D, Prima S, Arnold DL, Collins DL, Barillot C: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. IEEE Trans Med Imaging 30:1455–1467, 2011PubMedCrossRef Garcia-Lorenzo D, Prima S, Arnold DL, Collins DL, Barillot C: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. IEEE Trans Med Imaging 30:1455–1467, 2011PubMedCrossRef
4.
go back to reference Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS: Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17:187–201, 1998PubMedCrossRef Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS: Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17:187–201, 1998PubMedCrossRef
5.
go back to reference Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. International Journal of Radiation Oncology, Biology, Physics 59:300–312, 2004PubMedCrossRef Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, Wagner H: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. International Journal of Radiation Oncology, Biology, Physics 59:300–312, 2004PubMedCrossRef
6.
go back to reference Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63, 2001PubMedCrossRef Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63, 2001PubMedCrossRef
7.
go back to reference Prastawa M, Bullitt E, Ho S, Gerig G: A brain tumor segmentation framework based on outlier detection. Med Image Anal 8:275–283, 2004PubMedCrossRef Prastawa M, Bullitt E, Ho S, Gerig G: A brain tumor segmentation framework based on outlier detection. Med Image Anal 8:275–283, 2004PubMedCrossRef
8.
go back to reference Khotanloua H, Colliot O, Atif J, Bloch I: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Set Syst 160:1457–1473, 2009CrossRef Khotanloua H, Colliot O, Atif J, Bloch I: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Set Syst 160:1457–1473, 2009CrossRef
9.
go back to reference Andrews S, Hamarneh G, Saad A: Fast random walker with priors using precomputation for interactive medical image segmentation. Med Image Comput Comput-Assist Interv: MICCAI Int Conf Med Image Comput Comput-Assist Interv 13:9–16, 2010 Andrews S, Hamarneh G, Saad A: Fast random walker with priors using precomputation for interactive medical image segmentation. Med Image Comput Comput-Assist Interv: MICCAI Int Conf Med Image Comput Comput-Assist Interv 13:9–16, 2010
10.
go back to reference Mortensen EN, Barrett WA: Intelligent scissors for image composition. International Conference on Computer Graphics and Interactive Techniques:191–198, 1995 Mortensen EN, Barrett WA: Intelligent scissors for image composition. International Conference on Computer Graphics and Interactive Techniques:191–198, 1995
11.
go back to reference Mishra A, Wong A, Zhang W, Clausi D, Fieguth P: Improved interactive medical image segmentation using Enhanced Intelligent Scissors (EIS). Conf Proc: Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2008:3083–3086, 2008 Mishra A, Wong A, Zhang W, Clausi D, Fieguth P: Improved interactive medical image segmentation using Enhanced Intelligent Scissors (EIS). Conf Proc: Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2008:3083–3086, 2008
12.
go back to reference Ruzon M, Tomasi C: Alpha estimation in natural images. Conference proceedings: IEEE Conference on Computer Vision and Pattern Recognition 2000 Ruzon M, Tomasi C: Alpha estimation in natural images. Conference proceedings: IEEE Conference on Computer Vision and Pattern Recognition 2000
13.
go back to reference Grady L: Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1768–1783, 2006PubMedCrossRef Grady L: Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1768–1783, 2006PubMedCrossRef
14.
go back to reference Vezhnevets V, Konouchine V: “GrowCut”—Interactive multi-label N-D image segmentation by cellular automata. Graphicon: 150–156, 2005 Vezhnevets V, Konouchine V: “GrowCut”—Interactive multi-label N-D image segmentation by cellular automata. Graphicon: 150–156, 2005
15.
go back to reference Cousty J, Bertrand G, Najman L, Couprie M: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell 31:1362–1374, 2009PubMedCrossRef Cousty J, Bertrand G, Najman L, Couprie M: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell 31:1362–1374, 2009PubMedCrossRef
16.
go back to reference Boykov Y, Jolly MP: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. Int Conf Comput Vis 1:105–112, 2001 Boykov Y, Jolly MP: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. Int Conf Comput Vis 1:105–112, 2001
17.
go back to reference Rother C, Kolmogorov V, Blake A: “GrabCut”—Interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309–314, 2004CrossRef Rother C, Kolmogorov V, Blake A: “GrabCut”—Interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309–314, 2004CrossRef
18.
go back to reference Li Y, Sun J, Tang CK, Shum HY: Lazy snapping. ACM Siggraph: 303–308, 2004 Li Y, Sun J, Tang CK, Shum HY: Lazy snapping. ACM Siggraph: 303–308, 2004
19.
go back to reference Boykov Y, Funka LG: Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70:109–131, 2006CrossRef Boykov Y, Funka LG: Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70:109–131, 2006CrossRef
20.
go back to reference Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans Med Imaging 27:629–640, 2008PubMedCrossRef Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans Med Imaging 27:629–640, 2008PubMedCrossRef
21.
go back to reference Feng QJ, Li SQ, Yang W, Chen WF: Tumor segmentation using the learned distance metric. IEEE International Symposium on Biomedical Imaging: 1958–1961, 2011 Feng QJ, Li SQ, Yang W, Chen WF: Tumor segmentation using the learned distance metric. IEEE International Symposium on Biomedical Imaging: 1958–1961, 2011
22.
go back to reference Li SQ, Feng QJ, Chen WF, Lin YZ: A Graph guts based interactive segmentation method of meningioma in MR brain images. J South Med Univ 31:1164–1168, 2011 Li SQ, Feng QJ, Chen WF, Lin YZ: A Graph guts based interactive segmentation method of meningioma in MR brain images. J South Med Univ 31:1164–1168, 2011
23.
go back to reference Goldberger J, Roweis S, Hinton G, Salakhutdinov R: Neighbourhood components analysis. Advances in Neural Information Processing Systems: 513–520, 2005 Goldberger J, Roweis S, Hinton G, Salakhutdinov R: Neighbourhood components analysis. Advances in Neural Information Processing Systems: 513–520, 2005
24.
go back to reference Kolmogorov V, Zabih R: What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26:147–159, 2004PubMedCrossRef Kolmogorov V, Zabih R: What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26:147–159, 2004PubMedCrossRef
25.
go back to reference Boykov Y, Kolmogorov V: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:1124–1137, 2004PubMedCrossRef Boykov Y, Kolmogorov V: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:1124–1137, 2004PubMedCrossRef
26.
go back to reference Haralick RM: Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621, 1973CrossRef Haralick RM: Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621, 1973CrossRef
27.
go back to reference Sheshadri HS, Kandaswamy A: Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. Comput Med Imaging Graph 31:46–48, 2007PubMedCrossRef Sheshadri HS, Kandaswamy A: Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. Comput Med Imaging Graph 31:46–48, 2007PubMedCrossRef
28.
go back to reference Iscan Z, Yüksel A, Dokur Z: Medical image segmentation with transform and moment based features and incremental supervised neural network. Digit Signal Process 19:890–901, 2009CrossRef Iscan Z, Yüksel A, Dokur Z: Medical image segmentation with transform and moment based features and incremental supervised neural network. Digit Signal Process 19:890–901, 2009CrossRef
29.
go back to reference Mokji MM: Adaptive thresholding based on co-occurrence matrix edge information. Journal of Computers 2(8):44–52, 2007 Mokji MM: Adaptive thresholding based on co-occurrence matrix edge information. Journal of Computers 2(8):44–52, 2007
30.
go back to reference Gelzinisa A, Verikas A, Bacauskienea M: Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recogn 40:2367–2372, 2007CrossRef Gelzinisa A, Verikas A, Bacauskienea M: Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recogn 40:2367–2372, 2007CrossRef
31.
go back to reference Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S: SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012 Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S: SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012
Metadata
Title
Semi-automatic Segmentation of Brain Tumors Using Population and Individual Information
Authors
Yao Wu
Wei Yang
Jun Jiang
Shuanqian Li
Qianjin Feng
Wufan Chen
Publication date
01-08-2013
Publisher
Springer US
Published in
Journal of Imaging Informatics in Medicine / Issue 4/2013
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-012-9568-1

Other articles of this Issue 4/2013

Journal of Digital Imaging 4/2013 Go to the issue