Skip to main content
Top
Published in: Osteoporosis International 11/2016

01-11-2016 | Original Article

Selective protein depletion impairs bone growth and causes liver fatty infiltration in female rats: prevention by Spirulina alga

Authors: C. Fournier, R. Rizzoli, K. Bouzakri, P. Ammann

Published in: Osteoporosis International | Issue 11/2016

Login to get access

Abstract

Summary

Chronic protein malnutrition leads to child mortality in developing countries. Spirulina alga (Spi), being rich in protein and growing easily, is a good candidate as supplementation. We showed that Spi completely prevents bone growth retardation and liver disturbances observed in young rats fed a low protein diet. This supports Spi as a useful source of vegetable protein to fight against protein malnutrition.

Introduction

Chronic malnutrition is a main factor of child mortality in developing countries. A low protein diet impairs whole-body growth and leads to fatty liver in growing rats. Spi has great potential as a supplementation as it has a 60 % protein content and all essential amino acids. However, its specific impact on bone growth and the related secretion of hepatokines have not yet been studied.

Methods

To address this question, 6-week-old female rats were fed isocaloric diets containing 10 % casein, 5 % casein, or 5 % casein + 5 % protein from Spi during 9 weeks. Changes in tibia geometry, microarchitecture, BMC, BMD, and biomechanical properties were analyzed. Serum IGF-I, FGF21, follistatin, and activin A were assessed as well as their hepatic gene expressions in addition to those of Sirt1, Ghr, and Igf1r. Hepatic fat content was also assessed.

Results

A low protein diet altered bone geometry and reduced proximal tibia BMD and trabecular bone volume. In addition, it increased hepatic fat content and led to hepatic GH resistance by decreasing serum IGF-I and increasing serum FGF21 without altering serum activin A and follistatin. Spi prevented low protein diet-induced bone, hepatic, and hormonal changes, and even led to higher biomechanical properties and lower hepatic fat content in association with specific InhbA and Follistatin expression changes vs. the 10 % casein group.

Conclusions

Altogether our results demonstrate the preventive impact of Spi on bone growth delay and hepatic GH resistance in conditions of isocaloric dietary protein deficiency.
Appendix
Available only for authorised users
Literature
2.
go back to reference Schonfeldt HC, Gibson Hall N (2012) Dietary protein quality and malnutrition in Africa. Br J Nutr 108(Suppl 2):S69–76CrossRefPubMed Schonfeldt HC, Gibson Hall N (2012) Dietary protein quality and malnutrition in Africa. Br J Nutr 108(Suppl 2):S69–76CrossRefPubMed
3.
go back to reference Yahya ZA, Millward DJ, Yayha ZA (1994) Dietary protein and the regulation of long-bone and muscle growth in the rat. Clin Sci (Lond) 87:213–224CrossRef Yahya ZA, Millward DJ, Yayha ZA (1994) Dietary protein and the regulation of long-bone and muscle growth in the rat. Clin Sci (Lond) 87:213–224CrossRef
4.
go back to reference Van Duzen J, Carter JP, Zwagg RV (1976) Protein and calorie malnutrition among preschool Navajo Indian children, a follow-up. Am J Clin Nutr 29:657–662PubMed Van Duzen J, Carter JP, Zwagg RV (1976) Protein and calorie malnutrition among preschool Navajo Indian children, a follow-up. Am J Clin Nutr 29:657–662PubMed
5.
go back to reference Kwon DH, Kang W, Nam YS, Lee MS, Lee IY, Kim HJ, Rajasekar P, Lee JH, Baik M (2012) Dietary protein restriction induces steatohepatitis and alters leptin/signal transducers and activators of transcription 3 signaling in lactating rats. J Nutr Biochem 23:791–799CrossRefPubMed Kwon DH, Kang W, Nam YS, Lee MS, Lee IY, Kim HJ, Rajasekar P, Lee JH, Baik M (2012) Dietary protein restriction induces steatohepatitis and alters leptin/signal transducers and activators of transcription 3 signaling in lactating rats. J Nutr Biochem 23:791–799CrossRefPubMed
6.
go back to reference Frenk S, Gomez F, Ramos-Galvan R, Cravioto J (1958) Fatty liver in children; kwashiorkor. Am J Clin Nutr 6:298–309PubMed Frenk S, Gomez F, Ramos-Galvan R, Cravioto J (1958) Fatty liver in children; kwashiorkor. Am J Clin Nutr 6:298–309PubMed
7.
go back to reference Fournier C, Rizzoli R, Ammann P (2014) Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats. Endocrinology 155(11):4305–4315 Fournier C, Rizzoli R, Ammann P (2014) Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats. Endocrinology 155(11):4305–4315
8.
go back to reference Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res 23:131–142CrossRefPubMed Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res 23:131–142CrossRefPubMed
9.
go back to reference Fliesen T, Maiter D, Gerard G, Underwood LE, Maes M, Ketelslegers JM (1989) Reduction of serum insulin-like growth factor-I by dietary protein restriction is age dependent. Pediatr Res 26:415–419CrossRefPubMed Fliesen T, Maiter D, Gerard G, Underwood LE, Maes M, Ketelslegers JM (1989) Reduction of serum insulin-like growth factor-I by dietary protein restriction is age dependent. Pediatr Res 26:415–419CrossRefPubMed
10.
go back to reference De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443:165–171CrossRefPubMed De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443:165–171CrossRefPubMed
12.
go back to reference Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8:77–83CrossRefPubMedPubMedCentral Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8:77–83CrossRefPubMedPubMedCentral
13.
go back to reference Wei W, Dutchak PA, Wang X et al (2012) Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 109:3143–3148CrossRefPubMedPubMedCentral Wei W, Dutchak PA, Wang X et al (2012) Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 109:3143–3148CrossRefPubMedPubMedCentral
14.
go back to reference Kubicky RA, Wu S, Kharitonenkov A, De Luca F (2012) Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. Endocrinology 153:2287–2295CrossRefPubMed Kubicky RA, Wu S, Kharitonenkov A, De Luca F (2012) Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. Endocrinology 153:2287–2295CrossRefPubMed
15.
go back to reference Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P (2011) Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 152:164–171CrossRefPubMed Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P (2011) Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 152:164–171CrossRefPubMed
16.
go back to reference Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21:626–636CrossRefPubMed Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21:626–636CrossRefPubMed
17.
go back to reference Wang Y, Nishida S, Sakata T, Elalieh HZ, Chang W, Halloran BP, Doty SB, Bikle DD (2006) Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology 147:4753–4761CrossRefPubMed Wang Y, Nishida S, Sakata T, Elalieh HZ, Chang W, Halloran BP, Doty SB, Bikle DD (2006) Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology 147:4753–4761CrossRefPubMed
18.
go back to reference Wu S, Levenson A, Kharitonenkov A, De Luca F (2012) Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 287:26060–26067CrossRefPubMedPubMedCentral Wu S, Levenson A, Kharitonenkov A, De Luca F (2012) Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 287:26060–26067CrossRefPubMedPubMedCentral
19.
go back to reference Eijken M, Swagemakers S, Koedam M et al (2007) The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. FASEB J 21:2949–2960CrossRefPubMed Eijken M, Swagemakers S, Koedam M et al (2007) The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. FASEB J 21:2949–2960CrossRefPubMed
20.
go back to reference Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML, Maratos-Flier E (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463CrossRefPubMedPubMedCentral Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML, Maratos-Flier E (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463CrossRefPubMedPubMedCentral
21.
go back to reference Arturi F, Succurro E, Procopio C et al (2011) Nonalcoholic fatty liver disease is associated with low circulating levels of insulin-like growth factor-I. J Clin Endocrinol Metab 96:E1640–1644CrossRefPubMed Arturi F, Succurro E, Procopio C et al (2011) Nonalcoholic fatty liver disease is associated with low circulating levels of insulin-like growth factor-I. J Clin Endocrinol Metab 96:E1640–1644CrossRefPubMed
22.
go back to reference Yndestad A, Haukeland JW, Dahl TB et al (2009) A complex role of activin A in non-alcoholic fatty liver disease. Am J Gastroenterol 104:2196–2205CrossRefPubMed Yndestad A, Haukeland JW, Dahl TB et al (2009) A complex role of activin A in non-alcoholic fatty liver disease. Am J Gastroenterol 104:2196–2205CrossRefPubMed
24.
go back to reference Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5(8):1669–1685 Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5(8):1669–1685
25.
26.
go back to reference Maranesi M, Barzanti V, Carenini G, Gentili P (1984) Nutritional studies on Spirulina maxima. Acta Vitaminol Enzymol 6:295–304PubMed Maranesi M, Barzanti V, Carenini G, Gentili P (1984) Nutritional studies on Spirulina maxima. Acta Vitaminol Enzymol 6:295–304PubMed
27.
go back to reference Tranquille N, Emeis JJ, de Chambure D, Binot R, Tamponnet C (1994) Spirulina acceptability trials in rats. A study for the “MELISSA” life-support system. Adv Space Res 14:167–170CrossRefPubMed Tranquille N, Emeis JJ, de Chambure D, Binot R, Tamponnet C (1994) Spirulina acceptability trials in rats. A study for the “MELISSA” life-support system. Adv Space Res 14:167–170CrossRefPubMed
28.
go back to reference Salazar M, Chamorro GA, Salazar S, Steele CE (1996) Effect of Spirulina maxima consumption on reproduction and peri- and postnatal development in rats. Food Chem Toxicol 34:353–359CrossRefPubMed Salazar M, Chamorro GA, Salazar S, Steele CE (1996) Effect of Spirulina maxima consumption on reproduction and peri- and postnatal development in rats. Food Chem Toxicol 34:353–359CrossRefPubMed
29.
go back to reference Voltarelli FA, de Mello MA (2008) Spirulina enhanced the skeletal muscle protein in growing rats. Eur J Nutr 47:393–400CrossRefPubMed Voltarelli FA, de Mello MA (2008) Spirulina enhanced the skeletal muscle protein in growing rats. Eur J Nutr 47:393–400CrossRefPubMed
30.
go back to reference Simpore J, Kabore F, Zongo F, Dansou D, Bere A, Pignatelli S, Biondi DM, Ruberto G, Musumeci S (2006) Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutr J 5:3CrossRefPubMedPubMedCentral Simpore J, Kabore F, Zongo F, Dansou D, Bere A, Pignatelli S, Biondi DM, Ruberto G, Musumeci S (2006) Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutr J 5:3CrossRefPubMedPubMedCentral
31.
go back to reference Azabji-Kenfack M, Dikosso SE, Loni EG et al (2011) Potential of Spirulina platensis as a nutritional supplement in malnourished HIV-infected adults in sub-Saharan Africa: a randomised, single-blind study. Nutr Metab Insights 4:29–37CrossRefPubMedPubMedCentral Azabji-Kenfack M, Dikosso SE, Loni EG et al (2011) Potential of Spirulina platensis as a nutritional supplement in malnourished HIV-infected adults in sub-Saharan Africa: a randomised, single-blind study. Nutr Metab Insights 4:29–37CrossRefPubMedPubMedCentral
32.
go back to reference Moura LP, Puga GM, Beck WR, Teixeira IP, Ghezzi AC, Silva GA, Mello MA (2011) Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis 10:77CrossRefPubMedPubMedCentral Moura LP, Puga GM, Beck WR, Teixeira IP, Ghezzi AC, Silva GA, Mello MA (2011) Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis 10:77CrossRefPubMedPubMedCentral
33.
go back to reference Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rugsegger P (2000) 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 38:326–332CrossRefPubMed Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rugsegger P (2000) 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 38:326–332CrossRefPubMed
34.
go back to reference Jiang SD, Shen C, Jiang LS, Dai LY (2007) Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos Int 18:743–750CrossRefPubMed Jiang SD, Shen C, Jiang LS, Dai LY (2007) Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy. Osteoporos Int 18:743–750CrossRefPubMed
35.
go back to reference Ju YI, Sone T, Okamoto T, Fukunaga M (2008) Jump exercise during remobilization restores integrity of the trabecular architecture after tail suspension in young rats. J Appl Physiol 104:1594–1600CrossRefPubMed Ju YI, Sone T, Okamoto T, Fukunaga M (2008) Jump exercise during remobilization restores integrity of the trabecular architecture after tail suspension in young rats. J Appl Physiol 104:1594–1600CrossRefPubMed
36.
go back to reference Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883CrossRefPubMed Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883CrossRefPubMed
37.
go back to reference Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980CrossRefPubMed Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980CrossRefPubMed
38.
go back to reference Dubois-Ferriere V, Brennan TC, Dayer R, Rizzoli R, Ammann P (2011) Calcitropic hormones and IGF-I are influenced by dietary protein. Endocrinology 152:1839–1847CrossRefPubMed Dubois-Ferriere V, Brennan TC, Dayer R, Rizzoli R, Ammann P (2011) Calcitropic hormones and IGF-I are influenced by dietary protein. Endocrinology 152:1839–1847CrossRefPubMed
39.
go back to reference Fujimoto M, Tsuneyama K, Fujimoto T, Selmi C, Gershwin ME, Shimada Y (2012) Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Dig Liver Dis 44:767–774CrossRefPubMed Fujimoto M, Tsuneyama K, Fujimoto T, Selmi C, Gershwin ME, Shimada Y (2012) Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Dig Liver Dis 44:767–774CrossRefPubMed
40.
go back to reference Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ, Kopchick JJ, Le Roith D, Trucco M, Sperling MA (2009) Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Biol Chem 284:19937–19944CrossRefPubMedPubMedCentral Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ, Kopchick JJ, Le Roith D, Trucco M, Sperling MA (2009) Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Biol Chem 284:19937–19944CrossRefPubMedPubMedCentral
42.
go back to reference Sos BC, Harris C, Nordstrom SM, Tran JL, Balazs M, Caplazi P, Febbraio M, Applegate MA, Wagner KU, Weiss EJ (2011) Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J Clin Invest 121:1412–1423CrossRefPubMedPubMedCentral Sos BC, Harris C, Nordstrom SM, Tran JL, Balazs M, Caplazi P, Febbraio M, Applegate MA, Wagner KU, Weiss EJ (2011) Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J Clin Invest 121:1412–1423CrossRefPubMedPubMedCentral
43.
go back to reference Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338CrossRefPubMedPubMedCentral Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338CrossRefPubMedPubMedCentral
44.
go back to reference Kreidl E, Ozturk D, Metzner T, Berger W, Grusch M (2009) Activins and follistatins: emerging roles in liver physiology and cancer. World J Hepatol 1:17–27CrossRefPubMedPubMedCentral Kreidl E, Ozturk D, Metzner T, Berger W, Grusch M (2009) Activins and follistatins: emerging roles in liver physiology and cancer. World J Hepatol 1:17–27CrossRefPubMedPubMedCentral
45.
go back to reference Guasti L, Silvennoinen S, Bulstrode NW, Ferretti P, Sankilampi U, Dunkel L (2014) Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants through GH resistance in chondrocytes. J Clin Endocrinol Metab 99:E2198–2206CrossRefPubMed Guasti L, Silvennoinen S, Bulstrode NW, Ferretti P, Sankilampi U, Dunkel L (2014) Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants through GH resistance in chondrocytes. J Clin Endocrinol Metab 99:E2198–2206CrossRefPubMed
46.
go back to reference Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, Savvides M, Papatheodorou A, Terpos E (2013) Circulating activin-A is elevated in postmenopausal women with low bone mass: the three-month effect of zoledronic acid treatment. Osteoporos Int 24:2127–2132CrossRefPubMed Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, Savvides M, Papatheodorou A, Terpos E (2013) Circulating activin-A is elevated in postmenopausal women with low bone mass: the three-month effect of zoledronic acid treatment. Osteoporos Int 24:2127–2132CrossRefPubMed
47.
go back to reference Brennan-Speranza TC, Rizzoli R, Kream BE, Rosen C, Ammann P (2011) Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties. Bone 49:1073–1079CrossRefPubMed Brennan-Speranza TC, Rizzoli R, Kream BE, Rosen C, Ammann P (2011) Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties. Bone 49:1073–1079CrossRefPubMed
49.
go back to reference Gordon JI, Dewey KG, Mills DA, Medzhitov RM (2012) The human gut microbiota and undernutrition. Sci Transl Med 4:137, ps112 CrossRef Gordon JI, Dewey KG, Mills DA, Medzhitov RM (2012) The human gut microbiota and undernutrition. Sci Transl Med 4:137, ps112 CrossRef
50.
go back to reference Ohlsson C, Sjogren K (2015) Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26:69–74CrossRefPubMed Ohlsson C, Sjogren K (2015) Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26:69–74CrossRefPubMed
51.
go back to reference Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367CrossRefPubMedPubMedCentral Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367CrossRefPubMedPubMedCentral
Metadata
Title
Selective protein depletion impairs bone growth and causes liver fatty infiltration in female rats: prevention by Spirulina alga
Authors
C. Fournier
R. Rizzoli
K. Bouzakri
P. Ammann
Publication date
01-11-2016
Publisher
Springer London
Published in
Osteoporosis International / Issue 11/2016
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-016-3666-8

Other articles of this Issue 11/2016

Osteoporosis International 11/2016 Go to the issue