Skip to main content
Top
Published in: Chinese Medicine 1/2015

Open Access 01-12-2015 | Research

Selective inhibition of liver X receptor α-mediated lipogenesis in primary hepatocytes by licochalcone A

Authors: Gyun-Sik Oh, Gang Gu Lee, Jin Yoon, Won Keun Oh, Seung-Whan Kim

Published in: Chinese Medicine | Issue 1/2015

Login to get access

Abstract

Background

Sterol regulatory element binding protein-1c (SREBP-1c) is a regulator of the lipogenic pathway and is transcriptionally activated by liver X receptor α (LXRα). This study aims to investigate phytochemicals inhibiting the autonomous transactivity of LXRα with potentials as SREBP-1c inhibitors. Licochalcone A (LicA) is a flavonoid isolated from licorice root of Glycyrrhiza plant.

Methods

The effects of 238 natural chemicals on autonomous transactivity of LXRα were determined by the Gal4-TK-luciferase reporter system. The inclusion criteria for chemical selection was significant (P < 0.05) inhibition of autonomous transactivity of LXRα from three independent experiments. Transcript levels of mouse primary hepatocytes were measured by conventional or quantitative RT-PCR. Luciferase assay was used to assess synthetic or natural promoter activities of LXRα target genes. The effect of LicA on lipogenic activity was evaluated by measuring cellular triglycerides in mouse primary hepatocytes. The recruitment of RNA polymerase II to the LXR response element (LXRE) region was examined by chromatin immunoprecipitation.

Results

Among 238 natural compounds, LicA considerably inhibited the autonomous transactivity of LXRα and decreased the LXRα-dependent expression of SREBP-1c. LicA inhibited not only LXRα-dependent activation of the synthetic LXRE promoter but also that of the natural SREBP-1c promoter. As a consequence, LicA reduced the LXRα agonist-stimulated transcription of several lipogenic genes. Furthermore, LXRα-dependent hepatic lipid accumulation was repressed by LicA in mouse primary hepatocytes. Interestingly, the LXRα-dependent activation of ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1), other LXR target genes involved in reverse cholesterol transport (RCT), was not inhibited by LicA. LicA hindered the recruitment of RNA polymerase II to the LXRE of the SREBP-1c gene, but not of the ABCA1 gene.

Conclusions

LicA is a selective inhibitor of LXRα, repressing lipogenic LXRα target genes but not RCT-related LXRα target genes.
Literature
1.
go back to reference Towle HC, Kaytor EN, Shih HM. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr. 1997;17:405–33.CrossRefPubMed Towle HC, Kaytor EN, Shih HM. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr. 1997;17:405–33.CrossRefPubMed
2.
go back to reference Zhao LF, Iwasaki Y, Zhe W, Nishiyama M, Taguchi T, Tsugita M, et al. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription. Endocr J. 2010;57:317–24.CrossRefPubMed Zhao LF, Iwasaki Y, Zhe W, Nishiyama M, Taguchi T, Tsugita M, et al. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription. Endocr J. 2010;57:317–24.CrossRefPubMed
3.
go back to reference Abu-Elheiga L, Wu H, Gu Z, Bressler R, Wakil SJ. Acetyl-CoA carboxylase 2-/- mutant mice are protected against fatty liver under high-fat, high-carbohydrate dietary and de novo lipogenic conditions. J Biol Chem. 2012;287:12578–88.CrossRefPubMedCentralPubMed Abu-Elheiga L, Wu H, Gu Z, Bressler R, Wakil SJ. Acetyl-CoA carboxylase 2-/- mutant mice are protected against fatty liver under high-fat, high-carbohydrate dietary and de novo lipogenic conditions. J Biol Chem. 2012;287:12578–88.CrossRefPubMedCentralPubMed
4.
go back to reference Dorn C, Riener MO, Kirovski G, Saugspier M, Steib K, Weiss TS, et al. Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int J Clin Exp Pathol. 2010;3:505–14.PubMedCentralPubMed Dorn C, Riener MO, Kirovski G, Saugspier M, Steib K, Weiss TS, et al. Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int J Clin Exp Pathol. 2010;3:505–14.PubMedCentralPubMed
5.
go back to reference Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 2007;6:484–96.CrossRefPubMed Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 2007;6:484–96.CrossRefPubMed
6.
go back to reference Shimano H. Novel qualitative aspects of tissue fatty acids related to metabolic regulation: lessons from Elovl6 knockout. Prog Lipid Res. 2012;51:267–71.CrossRefPubMed Shimano H. Novel qualitative aspects of tissue fatty acids related to metabolic regulation: lessons from Elovl6 knockout. Prog Lipid Res. 2012;51:267–71.CrossRefPubMed
7.
go back to reference Wendel AA, Cooper DE, Ilkayeva OR, Muoio DM, Coleman RA. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J Biol Chem. 2013;288:27299–306.CrossRefPubMedCentralPubMed Wendel AA, Cooper DE, Ilkayeva OR, Muoio DM, Coleman RA. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J Biol Chem. 2013;288:27299–306.CrossRefPubMedCentralPubMed
8.
go back to reference Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118:829–38.CrossRefPubMedCentralPubMed Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118:829–38.CrossRefPubMedCentralPubMed
9.
go back to reference Latasa MJ, Moon YS, Kim KH, Sul HS. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc Natl Acad Sci U S A. 2000;97:10619–24.CrossRefPubMedCentralPubMed Latasa MJ, Moon YS, Kim KH, Sul HS. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc Natl Acad Sci U S A. 2000;97:10619–24.CrossRefPubMedCentralPubMed
10.
go back to reference Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12 Suppl 2:83–92.CrossRefPubMed Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12 Suppl 2:83–92.CrossRefPubMed
12.
go back to reference Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest. 1997;100:2115–24.CrossRefPubMedCentralPubMed Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest. 1997;100:2115–24.CrossRefPubMedCentralPubMed
13.
go back to reference Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia. 2009;52:882–90.CrossRefPubMed Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia. 2009;52:882–90.CrossRefPubMed
14.
go back to reference Savage DB, Choi CS, Samuel VT, Liu Z-X, Zhang D, Wang A, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 2006;116:817–24.CrossRefPubMedCentralPubMed Savage DB, Choi CS, Samuel VT, Liu Z-X, Zhang D, Wang A, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 2006;116:817–24.CrossRefPubMedCentralPubMed
15.
go back to reference Hudgins LC, Parker TS, Levine DM, Hellerstein MK. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J Clin Endocrinol Metab. 2011;96:861–8.CrossRefPubMedCentralPubMed Hudgins LC, Parker TS, Levine DM, Hellerstein MK. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J Clin Endocrinol Metab. 2011;96:861–8.CrossRefPubMedCentralPubMed
16.
go back to reference Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9:1033–45.CrossRefPubMed Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9:1033–45.CrossRefPubMed
17.
go back to reference Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A. 2004;101:11245–50.CrossRefPubMedCentralPubMed Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A. 2004;101:11245–50.CrossRefPubMedCentralPubMed
19.
go back to reference Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 2002;277:11019–25.CrossRefPubMed Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 2002;277:11019–25.CrossRefPubMed
20.
go back to reference Klaunig JE, Goldblatt PJ, Hinton DE, Lipsky MM, Chacko J, Trump BF. Mouse liver cell culture. I. Hepatocyte isolation. In Vitro. 1981;17:913–25.CrossRefPubMed Klaunig JE, Goldblatt PJ, Hinton DE, Lipsky MM, Chacko J, Trump BF. Mouse liver cell culture. I. Hepatocyte isolation. In Vitro. 1981;17:913–25.CrossRefPubMed
21.
go back to reference BLIGH EG, DYER WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.CrossRefPubMed BLIGH EG, DYER WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.CrossRefPubMed
22.
go back to reference Orlando V, Strutt H, Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods. 1997;11:205–14.CrossRefPubMed Orlando V, Strutt H, Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods. 1997;11:205–14.CrossRefPubMed
23.
go back to reference Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation. 2006;113:90–7.CrossRefPubMed Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation. 2006;113:90–7.CrossRefPubMed
24.
go back to reference Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci U S A. 2000;97:12097–102.CrossRefPubMedCentralPubMed Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci U S A. 2000;97:12097–102.CrossRefPubMedCentralPubMed
25.
go back to reference Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, et al. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem. 2001;276:39438–47.CrossRefPubMed Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, et al. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem. 2001;276:39438–47.CrossRefPubMed
26.
go back to reference Oram JF, Lawn RM. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res. 2001;42:1173–9.PubMed Oram JF, Lawn RM. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res. 2001;42:1173–9.PubMed
27.
go back to reference Yoon G, Jung YD, Cheon SH. Cytotoxic allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem Pharm Bull (Tokyo). 2005;53:694–5.CrossRef Yoon G, Jung YD, Cheon SH. Cytotoxic allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem Pharm Bull (Tokyo). 2005;53:694–5.CrossRef
28.
go back to reference Nomura T, Fukai T. Phenolic constituents of licorice (Glycyrrhiza species). Fortschr Chem Org Naturst. 1998;73:1–158.PubMed Nomura T, Fukai T. Phenolic constituents of licorice (Glycyrrhiza species). Fortschr Chem Org Naturst. 1998;73:1–158.PubMed
29.
go back to reference Kajiyama K, Demizu S, Hiraga Y, Kinoshita K, Koyama K, Takahashi K, et al. Two prenylated retrochalcones from Glycyrrhiza inflata. Phytochemistry. 1992;31:3229–32.CrossRef Kajiyama K, Demizu S, Hiraga Y, Kinoshita K, Koyama K, Takahashi K, et al. Two prenylated retrochalcones from Glycyrrhiza inflata. Phytochemistry. 1992;31:3229–32.CrossRef
30.
go back to reference Kolbe L, Immeyer J, Batzer J, Wensorra U, Dieck K, Mundt C, et al. Anti-inflammatory efficacy of Licochalcone A: correlation of clinical potency and in vitro effects. Arch Dermatol Res. 2006;298:23–30.CrossRefPubMed Kolbe L, Immeyer J, Batzer J, Wensorra U, Dieck K, Mundt C, et al. Anti-inflammatory efficacy of Licochalcone A: correlation of clinical potency and in vitro effects. Arch Dermatol Res. 2006;298:23–30.CrossRefPubMed
31.
go back to reference Funakoshi-Tago M, Nakamura K, Tsuruya R, Hatanaka M, Mashino T, Sonoda Y, et al. The fixed structure of Licochalcone A by alpha, beta-unsaturated ketone is necessary for anti-inflammatory activity through the inhibition of NF-kappaB activation. Int Immunopharmacol. 2010;10:562–71.CrossRefPubMed Funakoshi-Tago M, Nakamura K, Tsuruya R, Hatanaka M, Mashino T, Sonoda Y, et al. The fixed structure of Licochalcone A by alpha, beta-unsaturated ketone is necessary for anti-inflammatory activity through the inhibition of NF-kappaB activation. Int Immunopharmacol. 2010;10:562–71.CrossRefPubMed
32.
go back to reference Mi-Ichi F, Miyadera H, Kobayashi T, Takamiya S, Waki S, Iwata S, et al. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann N Y Acad Sci. 2005;1056:46–54.CrossRefPubMed Mi-Ichi F, Miyadera H, Kobayashi T, Takamiya S, Waki S, Iwata S, et al. Parasite mitochondria as a target of chemotherapy: inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Ann N Y Acad Sci. 2005;1056:46–54.CrossRefPubMed
33.
go back to reference Messier C, Grenier D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses. 2011;54:e801–6.CrossRefPubMed Messier C, Grenier D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses. 2011;54:e801–6.CrossRefPubMed
34.
go back to reference Rafi MM, Rosen RT, Vassil A, Ho CT, Zhang H, Ghai G, et al. Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer Res. 2000;20:2653–8.PubMed Rafi MM, Rosen RT, Vassil A, Ho CT, Zhang H, Ghai G, et al. Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer Res. 2000;20:2653–8.PubMed
35.
go back to reference Fu Y, Hsieh TC, Guo J, Kunicki J, Lee MY, Darzynkiewicz Z, et al. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem Biophys Res Commun. 2004;322:263–70.CrossRefPubMed Fu Y, Hsieh TC, Guo J, Kunicki J, Lee MY, Darzynkiewicz Z, et al. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem Biophys Res Commun. 2004;322:263–70.CrossRefPubMed
36.
go back to reference Kim SN, Bae SJ, Kwak HB, Min YK, Jung SH, Kim CH, et al. In vitro and in vivo osteogenic activity of licochalcone A. Amino Acids. 2012;42:1455–65.CrossRefPubMed Kim SN, Bae SJ, Kwak HB, Min YK, Jung SH, Kim CH, et al. In vitro and in vivo osteogenic activity of licochalcone A. Amino Acids. 2012;42:1455–65.CrossRefPubMed
37.
go back to reference Quan HY, Kim SJ, Kim Do Y, Jo HK, Kim GW, Chung SH. Licochalcone A regulates hepatic lipid metabolism through activation of AMP-activated protein kinase. Fitoterapia. 2013;86:208–16.CrossRefPubMed Quan HY, Kim SJ, Kim Do Y, Jo HK, Kim GW, Chung SH. Licochalcone A regulates hepatic lipid metabolism through activation of AMP-activated protein kinase. Fitoterapia. 2013;86:208–16.CrossRefPubMed
38.
go back to reference Cagen LM, Deng X, Wilcox HG, Park EA, Raghow R, Elam MB. Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem J. 2005;385:207–16.CrossRefPubMedCentralPubMed Cagen LM, Deng X, Wilcox HG, Park EA, Raghow R, Elam MB. Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem J. 2005;385:207–16.CrossRefPubMedCentralPubMed
39.
go back to reference Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent Transactivation of theABC1 Promoter by the Liver X Receptor/Retinoid X Receptor. J Biol Chem. 2000;275:28240–5.PubMed Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent Transactivation of theABC1 Promoter by the Liver X Receptor/Retinoid X Receptor. J Biol Chem. 2000;275:28240–5.PubMed
40.
go back to reference Repa JJ, Turley SD, Lobaccaro J-MA, Medina J, Li L, Lustig K, et al. Regulation of Absorption and ABC1-Mediated Efflux of Cholesterol by RXR Heterodimers. Science. 2000;289:1524–9.CrossRefPubMed Repa JJ, Turley SD, Lobaccaro J-MA, Medina J, Li L, Lustig K, et al. Regulation of Absorption and ABC1-Mediated Efflux of Cholesterol by RXR Heterodimers. Science. 2000;289:1524–9.CrossRefPubMed
41.
go back to reference Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol. 2006;26:534–40.CrossRefPubMed Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol. 2006;26:534–40.CrossRefPubMed
42.
go back to reference Wang N, Silver DL, Thiele C, Tall AR. ATP-binding Cassette Transporter A1 (ABCA1) Functions as a Cholesterol Efflux Regulatory Protein. J Biol Chem. 2001;276:23742–7.CrossRefPubMed Wang N, Silver DL, Thiele C, Tall AR. ATP-binding Cassette Transporter A1 (ABCA1) Functions as a Cholesterol Efflux Regulatory Protein. J Biol Chem. 2001;276:23742–7.CrossRefPubMed
43.
go back to reference Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A. 2004;101:9774–9.CrossRefPubMedCentralPubMed Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A. 2004;101:9774–9.CrossRefPubMedCentralPubMed
44.
go back to reference Wagner BL, Valledor AF, Shao G, Daige CL, Bischoff ED, Petrowski M, et al. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol Cell Biol. 2003;23:5780–9.CrossRefPubMedCentralPubMed Wagner BL, Valledor AF, Shao G, Daige CL, Bischoff ED, Petrowski M, et al. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol Cell Biol. 2003;23:5780–9.CrossRefPubMedCentralPubMed
Metadata
Title
Selective inhibition of liver X receptor α-mediated lipogenesis in primary hepatocytes by licochalcone A
Authors
Gyun-Sik Oh
Gang Gu Lee
Jin Yoon
Won Keun Oh
Seung-Whan Kim
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2015
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-015-0037-x

Other articles of this Issue 1/2015

Chinese Medicine 1/2015 Go to the issue