Skip to main content
Top
Published in: Cancer Cell International 1/2013

Open Access 01-12-2013 | Primary research

Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors

Authors: Khaled Y Orabi, Mohamed S Abaza, Khalid A El Sayed, Ahmed Y Elnagar, Rajaa Al-Attiyah, Radhika P Guleri

Published in: Cancer Cell International | Issue 1/2013

Login to get access

Abstract

Background

It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of Tamarix aucheriana and was shown to possess proteasome inhibitory activity.

Methods

Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives: benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl 3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and 3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores, synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant melanoma cells as well as normal human fibroblast cells.

Results

Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2-phases. They also arrested the growth of HTB68 cells at S- and G2-phase, respectively. Moreover, derivatives 2, 5, and 6 markedly induced apoptosis (≥ 90%) in both HTB66 and HTB68.

Conclusions

Computer-derived syringic acid derivatives possess selective anti-mitogenic activity on human malignant melanoma cells that may be attributed to perturbation of cell cycle, induction of apoptosis and inhibition of various 26S proteasomal activities.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parkin DM, Pisani P, Ferlay J: Global cancer statistics. CA Cancer J Clin. 1999, 1: 33-64.CrossRef Parkin DM, Pisani P, Ferlay J: Global cancer statistics. CA Cancer J Clin. 1999, 1: 33-64.CrossRef
2.
go back to reference Parkin DM, Bray F, Ferlay J, Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001, 2: 153-156.CrossRef Parkin DM, Bray F, Ferlay J, Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001, 2: 153-156.CrossRef
3.
4.
go back to reference Zimmermann KC, Green DR: How cells die: apoptosis pathways. J Allergy Clin Immunol. 2001, 4: 99-103.CrossRef Zimmermann KC, Green DR: How cells die: apoptosis pathways. J Allergy Clin Immunol. 2001, 4: 99-103.CrossRef
5.
go back to reference Goldberg AL: Protein degradation and protection against misfolded or damaged proteins. Nature. 2003, 426: 695-699.CrossRef Goldberg AL: Protein degradation and protection against misfolded or damaged proteins. Nature. 2003, 426: 695-699.CrossRef
6.
go back to reference Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN: Protein oxidation and cellular homeostasis on metabolism. Biochim Biophys Acta. 2007, 1773: 93-104. 10.1016/j.bbamcr.2006.08.039.CrossRefPubMed Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN: Protein oxidation and cellular homeostasis on metabolism. Biochim Biophys Acta. 2007, 1773: 93-104. 10.1016/j.bbamcr.2006.08.039.CrossRefPubMed
7.
go back to reference Amici M, Cecarini V, Pettinari A, Bonfili L, Angeletti M, Barocci S, Biagetti M, Fioretti E, Eleuteri AM: Binding of aflatoxins to the 20S proteasome: effects on enzyme functionality and implications for oxidative stress and apoptosis. Biol Chem. 2007, 388: 107-117.CrossRefPubMed Amici M, Cecarini V, Pettinari A, Bonfili L, Angeletti M, Barocci S, Biagetti M, Fioretti E, Eleuteri AM: Binding of aflatoxins to the 20S proteasome: effects on enzyme functionality and implications for oxidative stress and apoptosis. Biol Chem. 2007, 388: 107-117.CrossRefPubMed
8.
go back to reference Li B, Dou PQ: Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A. 2000, 8: 3850-3855.CrossRef Li B, Dou PQ: Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A. 2000, 8: 3850-3855.CrossRef
9.
go back to reference An B, Goldfarb RH, Siman R, Dou QP: Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ. 1998, 12: 1062-1075.CrossRef An B, Goldfarb RH, Siman R, Dou QP: Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ. 1998, 12: 1062-1075.CrossRef
10.
go back to reference Dou QP, Li B, Update: Proteasome inhibitors as potential novel anticancer agents. Drug Resist. 1999, 4: 215-223.CrossRef Dou QP, Li B, Update: Proteasome inhibitors as potential novel anticancer agents. Drug Resist. 1999, 4: 215-223.CrossRef
11.
go back to reference Kazi A, Urbizu DA, Kuhn DJ, Acebo AL, Jackson ER, Greenfelder GP: A natural musaceas plant extract inhibits proteasome activity and induces apoptosis selectively in human tumor and transformed, but not normal and non-transformed, cells. Int J Mol Med. 2003, 6: 879-887. Kazi A, Urbizu DA, Kuhn DJ, Acebo AL, Jackson ER, Greenfelder GP: A natural musaceas plant extract inhibits proteasome activity and induces apoptosis selectively in human tumor and transformed, but not normal and non-transformed, cells. Int J Mol Med. 2003, 6: 879-887.
12.
go back to reference Admas J: The proteasome: A suitable anti-neoplastic target. Nat Rev Cancer. 2004, 4: 349-360. 10.1038/nrc1361.CrossRef Admas J: The proteasome: A suitable anti-neoplastic target. Nat Rev Cancer. 2004, 4: 349-360. 10.1038/nrc1361.CrossRef
13.
go back to reference Richardson PG, Sonneveld P, Schuster MW: Bortezomib or high dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005, 352: 2487-2498. 10.1056/NEJMoa043445.CrossRefPubMed Richardson PG, Sonneveld P, Schuster MW: Bortezomib or high dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005, 352: 2487-2498. 10.1056/NEJMoa043445.CrossRefPubMed
14.
go back to reference Goy A, Younes A, McLaughin P: Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005, 23: 667-675. 10.1200/JCO.2005.03.108.CrossRefPubMed Goy A, Younes A, McLaughin P: Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005, 23: 667-675. 10.1200/JCO.2005.03.108.CrossRefPubMed
15.
go back to reference Yang H, Landis-Piwowar KR, Chen D, Milacic V, Dou QP: Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci. 2008, 9: 227-239. 10.2174/138920308784533998.PubMedCentralCrossRefPubMed Yang H, Landis-Piwowar KR, Chen D, Milacic V, Dou QP: Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci. 2008, 9: 227-239. 10.2174/138920308784533998.PubMedCentralCrossRefPubMed
16.
go back to reference Orlowski RZ, Kuhn DJ: Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res. 2008, 14: 1649-1657. 10.1158/1078-0432.CCR-07-2218.CrossRefPubMed Orlowski RZ, Kuhn DJ: Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res. 2008, 14: 1649-1657. 10.1158/1078-0432.CCR-07-2218.CrossRefPubMed
17.
go back to reference Gulder TA, Moore BS: Salinosporamide natural products: Potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed. 2010, 49: 9346-9367. 10.1002/anie.201000728.CrossRef Gulder TA, Moore BS: Salinosporamide natural products: Potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed. 2010, 49: 9346-9367. 10.1002/anie.201000728.CrossRef
18.
go back to reference Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little DR, McIntosch JM, Newman DJ, Potts BC, Shuster DE: The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol Sci. 2010, 31: 255-265. 10.1016/j.tips.2010.02.005.CrossRefPubMed Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little DR, McIntosch JM, Newman DJ, Potts BC, Shuster DE: The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol Sci. 2010, 31: 255-265. 10.1016/j.tips.2010.02.005.CrossRefPubMed
19.
go back to reference Singh R, Sharma M, Joshi P, Rawat DS: Clinical status of anti-cancer agents derived from marine sources. Anti-Cancer Ag Med Chem. 2008, 8: 603-617.CrossRef Singh R, Sharma M, Joshi P, Rawat DS: Clinical status of anti-cancer agents derived from marine sources. Anti-Cancer Ag Med Chem. 2008, 8: 603-617.CrossRef
20.
go back to reference Ojima I: Modern natural products chemistry and drug discovery. J Med Chem. 2008, 51: 2587-2588. 10.1021/jm701291u.CrossRefPubMed Ojima I: Modern natural products chemistry and drug discovery. J Med Chem. 2008, 51: 2587-2588. 10.1021/jm701291u.CrossRefPubMed
21.
go back to reference Groll M, Koguchi Y, Huber R: Crystal structure of the 20S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol. 2001, 311: 543-548. 10.1006/jmbi.2001.4869.CrossRefPubMed Groll M, Koguchi Y, Huber R: Crystal structure of the 20S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol. 2001, 311: 543-548. 10.1006/jmbi.2001.4869.CrossRefPubMed
22.
go back to reference Kohno J, Koguchi Y, Nishio M, Nakao K, Kuroda M, Shimizu R, Ohnuki T, Komatsubara S: Structures of TMC-95A − D: novel proteasome inhibitors from Apiosporamontagnei Sacc. TC 1093. J Org Chem. 2000, 65: 990-995. 10.1021/jo991375+.CrossRefPubMed Kohno J, Koguchi Y, Nishio M, Nakao K, Kuroda M, Shimizu R, Ohnuki T, Komatsubara S: Structures of TMC-95A − D: novel proteasome inhibitors from Apiosporamontagnei Sacc. TC 1093. J Org Chem. 2000, 65: 990-995. 10.1021/jo991375+.CrossRefPubMed
23.
go back to reference Kontoyianni M, McClellan LM, Sokol GS: Evaluation of docking performance: comparative data on docking algorithms. J Med Chem. 2004, 47: 558-565. 10.1021/jm0302997.CrossRefPubMed Kontoyianni M, McClellan LM, Sokol GS: Evaluation of docking performance: comparative data on docking algorithms. J Med Chem. 2004, 47: 558-565. 10.1021/jm0302997.CrossRefPubMed
24.
go back to reference Wang R, Lu Y, Wang S: Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem. 2003, 46: 2287-2303. 10.1021/jm0203783.CrossRefPubMed Wang R, Lu Y, Wang S: Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem. 2003, 46: 2287-2303. 10.1021/jm0203783.CrossRefPubMed
25.
go back to reference Pettinari A, Amici M, Cuccioloni M, Angeletti M, Fioretti E, Eleuteri AM: Effect of polyphenolic compounds on the proteolytic activities of constitutive and immuno-proteasomes. Antioxid Redox Signal. 2006, 8: 121-129. 10.1089/ars.2006.8.121.CrossRefPubMed Pettinari A, Amici M, Cuccioloni M, Angeletti M, Fioretti E, Eleuteri AM: Effect of polyphenolic compounds on the proteolytic activities of constitutive and immuno-proteasomes. Antioxid Redox Signal. 2006, 8: 121-129. 10.1089/ars.2006.8.121.CrossRefPubMed
26.
go back to reference Dosenko VE, Nagibin VS, Tumanovskaia LV, Zagorii V, Moibenko AA: The influence of quercetin on the activity of purified 20S, 26S proteasome and proteasomal activity in isolated cardiomyocytes. Biomed Khim. 2006, 52: 138-145.PubMed Dosenko VE, Nagibin VS, Tumanovskaia LV, Zagorii V, Moibenko AA: The influence of quercetin on the activity of purified 20S, 26S proteasome and proteasomal activity in isolated cardiomyocytes. Biomed Khim. 2006, 52: 138-145.PubMed
27.
go back to reference Kumar AP, Garcia GE, Ghosh R, Rajnarayanan RV, Alworth WL, Slaga TJ: 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia. 2003, 5: 255-266.PubMedCentralCrossRefPubMed Kumar AP, Garcia GE, Ghosh R, Rajnarayanan RV, Alworth WL, Slaga TJ: 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia. 2003, 5: 255-266.PubMedCentralCrossRefPubMed
28.
go back to reference Yin MC, Lin CC, Wu HC, Tsao SM, Hsu CK: Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. J Agric Food Chem. 2009, 57: 6468-6473. 10.1021/jf9004466.CrossRefPubMed Yin MC, Lin CC, Wu HC, Tsao SM, Hsu CK: Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. J Agric Food Chem. 2009, 57: 6468-6473. 10.1021/jf9004466.CrossRefPubMed
29.
go back to reference Ho HH, Chang CS, Ho WC, Liao SY, Wu CH, Wang CJ: Anti-metastasis effects of gallic acid on gastric cancer cells involve inhibition of NF-kappaB activity and down-regulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol. 2010, 48: 2508-2516. 10.1016/j.fct.2010.06.024.CrossRefPubMed Ho HH, Chang CS, Ho WC, Liao SY, Wu CH, Wang CJ: Anti-metastasis effects of gallic acid on gastric cancer cells involve inhibition of NF-kappaB activity and down-regulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol. 2010, 48: 2508-2516. 10.1016/j.fct.2010.06.024.CrossRefPubMed
30.
go back to reference Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A: Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res. 2004, 6: R63-R74. 10.1186/bcr752.PubMedCentralCrossRefPubMed Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A: Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res. 2004, 6: R63-R74. 10.1186/bcr752.PubMedCentralCrossRefPubMed
31.
go back to reference Nam S, Smith DM, Dou QP: Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem. 2001, 276: 13322-13330. 10.1074/jbc.M004209200.CrossRefPubMed Nam S, Smith DM, Dou QP: Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem. 2001, 276: 13322-13330. 10.1074/jbc.M004209200.CrossRefPubMed
32.
go back to reference Smith DM, Wang Z, Kazi A, Li LH, Chan TH, Dou QP: Synthetic analogs of green tea polyphenols as proteasome inhibitors. Mol Med. 2002, 8: 382-392.PubMedCentralPubMed Smith DM, Wang Z, Kazi A, Li LH, Chan TH, Dou QP: Synthetic analogs of green tea polyphenols as proteasome inhibitors. Mol Med. 2002, 8: 382-392.PubMedCentralPubMed
33.
go back to reference Wan SB, Chen D, Dou QP, Chan TH: Study of the green tea polyphenols catechin-3-gallate (CG) and epicatechin-3-gallate (ECG) as proteasome inhibitors. Bioorg Med Chem. 2004, 12: 3521-3527. 10.1016/j.bmc.2004.04.033.CrossRefPubMed Wan SB, Chen D, Dou QP, Chan TH: Study of the green tea polyphenols catechin-3-gallate (CG) and epicatechin-3-gallate (ECG) as proteasome inhibitors. Bioorg Med Chem. 2004, 12: 3521-3527. 10.1016/j.bmc.2004.04.033.CrossRefPubMed
34.
go back to reference Chen D, Daniel KG, Chen MS, Kuhn DL, Landis-Piwowar KR, Dou QP: Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol. 2005, 69: 1421-1432. 10.1016/j.bcp.2005.02.022.CrossRefPubMed Chen D, Daniel KG, Chen MS, Kuhn DL, Landis-Piwowar KR, Dou QP: Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol. 2005, 69: 1421-1432. 10.1016/j.bcp.2005.02.022.CrossRefPubMed
35.
go back to reference Dikshit P, Goswami A, Mishra A, Chatterjee M, Jana NR: Curcumin induces stress response, neurite outgrowth and prevent NF-kappaB activation by inhibiting the proteasome function. Neurotox Res. 2006, 9: 29-37. 10.1007/BF03033305.CrossRefPubMed Dikshit P, Goswami A, Mishra A, Chatterjee M, Jana NR: Curcumin induces stress response, neurite outgrowth and prevent NF-kappaB activation by inhibiting the proteasome function. Neurotox Res. 2006, 9: 29-37. 10.1007/BF03033305.CrossRefPubMed
36.
go back to reference Ali RE, Rattan SI: Curcumin’s biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann NY Acad Sci. 2006, 1067: 394-399. 10.1196/annals.1354.056.CrossRefPubMed Ali RE, Rattan SI: Curcumin’s biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann NY Acad Sci. 2006, 1067: 394-399. 10.1196/annals.1354.056.CrossRefPubMed
37.
go back to reference Si X, Wang Y, Wong J, Zhang J, McManus BM, Luo H: Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J Virol. 2007, 81: 3142-3150. 10.1128/JVI.02028-06.PubMedCentralCrossRefPubMed Si X, Wang Y, Wong J, Zhang J, McManus BM, Luo H: Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J Virol. 2007, 81: 3142-3150. 10.1128/JVI.02028-06.PubMedCentralCrossRefPubMed
38.
go back to reference Kazi A, Daniel KG, Smith DM, Kumar NB, Dou QP: Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochem Pharmacol. 2003, 66: 965-976. 10.1016/S0006-2952(03)00414-3.CrossRefPubMed Kazi A, Daniel KG, Smith DM, Kumar NB, Dou QP: Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochem Pharmacol. 2003, 66: 965-976. 10.1016/S0006-2952(03)00414-3.CrossRefPubMed
39.
go back to reference Kuhn D, Lam WH, Kazi A, Daniel KG, Song S, Chow LM, Chan TH, Dou QP: Synthetic peracetate tea polyphenols as potent proteasome inhibitors and apoptosis inducers in human cancer cells. Front Biosci. 2005, 10: 1010-1023. 10.2741/1595.CrossRefPubMed Kuhn D, Lam WH, Kazi A, Daniel KG, Song S, Chow LM, Chan TH, Dou QP: Synthetic peracetate tea polyphenols as potent proteasome inhibitors and apoptosis inducers in human cancer cells. Front Biosci. 2005, 10: 1010-1023. 10.2741/1595.CrossRefPubMed
40.
go back to reference Osanai K, Landis-Piwowar KR, Dou QP, Chan TH: A para-amino substituent on the O-ring of green tea polyphenol epigallocatechin-3-gallate as a novel proteasome inhibitor and cancer cell apoptosis inducer. Bioorg Med Chem. 2007, 15: 5076-5082. 10.1016/j.bmc.2007.05.041.PubMedCentralCrossRefPubMed Osanai K, Landis-Piwowar KR, Dou QP, Chan TH: A para-amino substituent on the O-ring of green tea polyphenol epigallocatechin-3-gallate as a novel proteasome inhibitor and cancer cell apoptosis inducer. Bioorg Med Chem. 2007, 15: 5076-5082. 10.1016/j.bmc.2007.05.041.PubMedCentralCrossRefPubMed
41.
go back to reference Ding Q, Keller JN: Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem. 2001, 77: 1010-1017. 10.1046/j.1471-4159.2001.00302.x.CrossRefPubMed Ding Q, Keller JN: Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem. 2001, 77: 1010-1017. 10.1046/j.1471-4159.2001.00302.x.CrossRefPubMed
42.
go back to reference Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka S, Uchida K: 4-hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem. 1999, 274: 23787-23793. 10.1074/jbc.274.34.23787.CrossRefPubMed Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka S, Uchida K: 4-hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem. 1999, 274: 23787-23793. 10.1074/jbc.274.34.23787.CrossRefPubMed
43.
go back to reference Chauhan D, Hideshima T, Anderson KC: Targeting proteasomes as therapy in multiple myeloma. Adv Exp Med Biol. 2008, 615: 251-260. 10.1007/978-1-4020-6554-5_12.CrossRefPubMed Chauhan D, Hideshima T, Anderson KC: Targeting proteasomes as therapy in multiple myeloma. Adv Exp Med Biol. 2008, 615: 251-260. 10.1007/978-1-4020-6554-5_12.CrossRefPubMed
44.
go back to reference Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, Vallet S, Bouxsein ML, Pozzi S, Chhetri S, Seo YD, Aronson JP, Patel C, Fulciniti M, Purton LE, Glimcher LH, Lian JB, Stein G, Anderson KC, Scadden DT: Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008, 118: 491-504.PubMedCentralPubMed Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, Vallet S, Bouxsein ML, Pozzi S, Chhetri S, Seo YD, Aronson JP, Patel C, Fulciniti M, Purton LE, Glimcher LH, Lian JB, Stein G, Anderson KC, Scadden DT: Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008, 118: 491-504.PubMedCentralPubMed
45.
go back to reference Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M: Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell. 2003, 115: 71-82. 10.1016/S0092-8674(03)00755-4.CrossRefPubMed Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M: Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell. 2003, 115: 71-82. 10.1016/S0092-8674(03)00755-4.CrossRefPubMed
46.
go back to reference Roberto P, Bruce R, Michael W, Giulia C, Ilaria T, Dario F, Valentina G, Marta C, Silvia P, Massimo M, Gabriella P, Cecilia A, Nicoletta P, Mara C, di Stefano G, Paola N, de Paola F, Ivan S, Ilaria R, Riccardo F, Benedetta B, Giovanni C, Susan JB, Kathryn H, Hugh Z, Antonino N, Antonio P, Celia B, Huib O, Alberto B: CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood. 2008, 111: 2765-2775. 10.1182/blood-2007-07-100651.CrossRef Roberto P, Bruce R, Michael W, Giulia C, Ilaria T, Dario F, Valentina G, Marta C, Silvia P, Massimo M, Gabriella P, Cecilia A, Nicoletta P, Mara C, di Stefano G, Paola N, de Paola F, Ivan S, Ilaria R, Riccardo F, Benedetta B, Giovanni C, Susan JB, Kathryn H, Hugh Z, Antonino N, Antonio P, Celia B, Huib O, Alberto B: CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood. 2008, 111: 2765-2775. 10.1182/blood-2007-07-100651.CrossRef
47.
go back to reference Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP: Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011, 11: 239-253. 10.2174/156800911794519752.PubMedCentralCrossRefPubMed Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP: Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011, 11: 239-253. 10.2174/156800911794519752.PubMedCentralCrossRefPubMed
48.
go back to reference Scagliotti G: Proteasome inhibitors in lung cancer. Crit Rev Oncol Hematol. 2006, 58: 177-189. 10.1016/j.critrevonc.2005.12.001.CrossRefPubMed Scagliotti G: Proteasome inhibitors in lung cancer. Crit Rev Oncol Hematol. 2006, 58: 177-189. 10.1016/j.critrevonc.2005.12.001.CrossRefPubMed
49.
go back to reference Nalepa G, Rolfe M, Harper JW: Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov. 2006, 5: 596-613. 10.1038/nrd2056.CrossRefPubMed Nalepa G, Rolfe M, Harper JW: Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov. 2006, 5: 596-613. 10.1038/nrd2056.CrossRefPubMed
50.
go back to reference Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shennk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA, Orlowski RZ: Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007, 110: 3281-3290. 10.1182/blood-2007-01-065888.PubMedCentralCrossRefPubMed Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shennk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA, Orlowski RZ: Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007, 110: 3281-3290. 10.1182/blood-2007-01-065888.PubMedCentralCrossRefPubMed
51.
go back to reference Abaza MS: Augmentation of the anticancer effects of proteasome inhibitors by combination with sodium butyrate in human colorectal cancer cells. Exp Ther Med. 2010, 1: 675-693.CrossRef Abaza MS: Augmentation of the anticancer effects of proteasome inhibitors by combination with sodium butyrate in human colorectal cancer cells. Exp Ther Med. 2010, 1: 675-693.CrossRef
52.
go back to reference Tripos Associates: SYBYL Molecular Modelling Software, version X. 2009, St. Louis, MO: Tripos Associates, Technical tips online. Available athttp://www.tripos.com. Accessed on August 1, 2012, Tripos Associates: SYBYL Molecular Modelling Software, version X. 2009, St. Louis, MO: Tripos Associates, Technical tips online. Available athttp://​www.​tripos.​com. Accessed on August 1, 2012,
53.
go back to reference Welch W, Ruppert J, Jain A: Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol. 1996, 3: 449-462. 10.1016/S1074-5521(96)90093-9.CrossRefPubMed Welch W, Ruppert J, Jain A: Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol. 1996, 3: 449-462. 10.1016/S1074-5521(96)90093-9.CrossRefPubMed
54.
go back to reference Jain AN: Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003, 46: 499-511. 10.1021/jm020406h.CrossRefPubMed Jain AN: Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003, 46: 499-511. 10.1021/jm020406h.CrossRefPubMed
Metadata
Title
Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors
Authors
Khaled Y Orabi
Mohamed S Abaza
Khalid A El Sayed
Ahmed Y Elnagar
Rajaa Al-Attiyah
Radhika P Guleri
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2013
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-13-82

Other articles of this Issue 1/2013

Cancer Cell International 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine