Skip to main content
Top
Published in: European Journal of Nutrition 8/2006

01-12-2006 | ORIGINAL CONTRIBUTION

Selective bronchodilatory effect of Rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol

Authors: Arif-ullah Khan, Anwarul Hassan Gilani, PhD

Published in: European Journal of Nutrition | Issue 8/2006

Login to get access

Summary

Background

Rooibos tea (Aspalathus linearis) is commonly used for hyperactive gastrointestinal, respiratory and cardiovascular disorders.

Aim of study

The aqueous extract of Rooibos tea (RT) was studied for the possible bronchodilator, antispasmodic and blood pressure lowering activities in an attempt to rationalize some of its medicinal uses.

Methods

Isolated tissue preparations, such as rabbit jejunum, aorta and guinea-pig trachea and atria were set up in appropriate physiological salt solutions and aerated with carbogen. For in vivo studies rats were anesthetized with pentothal sodium and blood pressure was measured through carotid artery cannulation.

Results

In jejunum, RT caused a concentration-dependent relaxation of low K+ (25 mM)-induced contractions, with mild effect on the contractions induced by high K+ (80 mM). In presence of glibenclamide, the relaxation of low K+-induced contractions was prevented. Similarly, cromakalim caused glibenclamide-sensitive inhibition of low K+, but not of high K+, while verapamil did not differentiate in its inhibitory effect on contractions produced by the two concentrations of K+. Like in jejunum, RT caused glibenclamide-sensitive relaxation of low K+-induced contractions in trachea and aorta, but with a 20 times higher potency in trachea. In atria, RT was least potent with weak inhibitory effect on atrial force and rate of contractions. RT caused a dose-dependent fall in arterial blood pressure in rats under anesthesia. Among the tested pure compounds of Rooibos, chrysoeriol showed selective bronchodilator effect. Chrysoeriol (luteolin 3′-methyl ether) is a bioactive flavonoid known for antioxidant, antiinflammatory, antitumor, antimicrobial, antiviral, and free radical scavenging activities.

Conclusion

These results indicate that the bronchodilator, antispasmodic and blood pressure lowering effects of Rooibos tea are mediated predominantly through KATP channel activation with the selective bronchodilatory effect. This study provides a sound mechanistic basis for the wide medicinal use of Rooibos tea, with the therapeutic potential to be developed for congestive respiratory ailments.
Literature
1.
go back to reference Wyk BV, Oudtshoorn BV, Gericke N (2002) Medicinal plants of South Africa. Briza Publications, Pretoria, pp 48–49 Wyk BV, Oudtshoorn BV, Gericke N (2002) Medicinal plants of South Africa. Briza Publications, Pretoria, pp 48–49
3.
go back to reference Joubert E, Winterton P, Britz TJ, Ferreira D (2004) Superoxide anion and α,α-diphenyl-β-picrylhydrazyl radical scavenging capacity of Rooibos (Aspalathus linearis) aqueous extracts, crude phenolic fractions, tannin and flavonoids. Food Res Int 37:133–138CrossRef Joubert E, Winterton P, Britz TJ, Ferreira D (2004) Superoxide anion and α,α-diphenyl-β-picrylhydrazyl radical scavenging capacity of Rooibos (Aspalathus linearis) aqueous extracts, crude phenolic fractions, tannin and flavonoids. Food Res Int 37:133–138CrossRef
4.
go back to reference Duke JA, Bogenschutz-Godwin MJ, Du celliar J, Duke PAK (2002) Hand book of medicinal herbs, 2nd edn. CRC Press, Boca Raton, pp 612–613 Duke JA, Bogenschutz-Godwin MJ, Du celliar J, Duke PAK (2002) Hand book of medicinal herbs, 2nd edn. CRC Press, Boca Raton, pp 612–613
5.
go back to reference Brown D (1995) Encyclopaedia of herbs and their uses. Dorling Kindersley, London, p 244 Brown D (1995) Encyclopaedia of herbs and their uses. Dorling Kindersley, London, p 244
6.
go back to reference Nakano M (1997) Rooibos tea as an anti-aging beverage. Rooibos Limited, Clanwilliam, 8135 Nakano M (1997) Rooibos tea as an anti-aging beverage. Rooibos Limited, Clanwilliam, 8135
7.
go back to reference Inanami O, Asanuma T, Inukai N, Jin T, Shimokawa S, Kasai N, Nakano M, Sato F, Kuwabara M (1995) The supressión of age-related accumulation of lipid peroxides in rat brain by administration of Rooibos tea (Aspalathus linearis). Neurosci Lett 196:85–88CrossRef Inanami O, Asanuma T, Inukai N, Jin T, Shimokawa S, Kasai N, Nakano M, Sato F, Kuwabara M (1995) The supressión of age-related accumulation of lipid peroxides in rat brain by administration of Rooibos tea (Aspalathus linearis). Neurosci Lett 196:85–88CrossRef
8.
go back to reference Marnewick J, Joubert E, Joseph S, Swanevelder S, Swart P, Gelderbolm W (2005) Inhibition of tumour promoton in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique Southern African herbal teas. Cancer Lett 224:193–202CrossRef Marnewick J, Joubert E, Joseph S, Swanevelder S, Swart P, Gelderbolm W (2005) Inhibition of tumour promoton in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique Southern African herbal teas. Cancer Lett 224:193–202CrossRef
9.
go back to reference Ulicna O, Vancova O, Bozek P, Carsky J, Sebekova K, Boor P, Nakano M, Greksak M (2006) Rooibos tea partially prevents oxidative stress in streptozotocin-induced diabetic rats. Physiol Res 55:157–164 Ulicna O, Vancova O, Bozek P, Carsky J, Sebekova K, Boor P, Nakano M, Greksak M (2006) Rooibos tea partially prevents oxidative stress in streptozotocin-induced diabetic rats. Physiol Res 55:157–164
10.
go back to reference Na HK, Mossanda KS, Lee JY, Surh YJ (2004). Inhibition of phorbol ester-induced COX-2 expression by some edible African plants. Biofactors 21:149–153 Na HK, Mossanda KS, Lee JY, Surh YJ (2004). Inhibition of phorbol ester-induced COX-2 expression by some edible African plants. Biofactors 21:149–153
11.
go back to reference Gilani AH, Khan A, Ghayur MN, Ali SF, Herzig JW (2006) Antispasmodic effect of Rooibos tea (Aspalathus linearis) is mediated predominantly through K+ channel activation. Basic Clin Pharm Toxicol 99:365–373CrossRef Gilani AH, Khan A, Ghayur MN, Ali SF, Herzig JW (2006) Antispasmodic effect of Rooibos tea (Aspalathus linearis) is mediated predominantly through K+ channel activation. Basic Clin Pharm Toxicol 99:365–373CrossRef
12.
go back to reference National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, pp 1–7 National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, pp 1–7
13.
go back to reference Evans WC (1996) Trease and Evan’s pharmacognosy, 14th edn. WB Sounders, London, pp 161–408 Evans WC (1996) Trease and Evan’s pharmacognosy, 14th edn. WB Sounders, London, pp 161–408
14.
go back to reference Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and oxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymol 299:152–178CrossRef Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and oxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymol 299:152–178CrossRef
15.
go back to reference Huang DJ, Lin CD, Chen HJ, Lin YH (2004) Antioxidant and antiproliferative activaties of sweet potato (Ipomoea batatas [L.] Lam ‘Tainong 57’) constituents. Bot Bull Acad Sin 45:179–186 Huang DJ, Lin CD, Chen HJ, Lin YH (2004) Antioxidant and antiproliferative activaties of sweet potato (Ipomoea batatas [L.] Lam ‘Tainong 57’) constituents. Bot Bull Acad Sin 45:179–186
16.
go back to reference Gilani AH, Shah AJ, Ghayur MN, Majeed K (2005a) Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci 76:3089–3105CrossRef Gilani AH, Shah AJ, Ghayur MN, Majeed K (2005a) Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci 76:3089–3105CrossRef
17.
go back to reference Frank H, Puschmann A, Schusdziarra V, Allescher HD (1994) Functional evidence for a glibenclamide-sensitive K+ channels in rat ileal smooth muscle. Eur J Pharmacol 271:379–386CrossRef Frank H, Puschmann A, Schusdziarra V, Allescher HD (1994) Functional evidence for a glibenclamide-sensitive K+ channels in rat ileal smooth muscle. Eur J Pharmacol 271:379–386CrossRef
18.
go back to reference Quest U (1992) Potassium channel openers: Pharmacological and clinical aspects. Fund Clin Pharmacol 6:279–293CrossRef Quest U (1992) Potassium channel openers: Pharmacological and clinical aspects. Fund Clin Pharmacol 6:279–293CrossRef
19.
go back to reference Pelaia G, Gallell L, Vatrella A, Grembiale RD, Maselli R, De Sarro GB, Marsico SA (2002) Potential role of potassium channel openers in the treatment of asthma and chronic obstructive pulmonary disease. Life Sci 70:977–990CrossRef Pelaia G, Gallell L, Vatrella A, Grembiale RD, Maselli R, De Sarro GB, Marsico SA (2002) Potential role of potassium channel openers in the treatment of asthma and chronic obstructive pulmonary disease. Life Sci 70:977–990CrossRef
20.
go back to reference Hamilton TC, Weir SW, Weston TH (1986) Comparison of the effects of BRL34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol 88:103–111 Hamilton TC, Weir SW, Weston TH (1986) Comparison of the effects of BRL34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol 88:103–111
21.
go back to reference Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Towards understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245 Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Towards understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245
22.
go back to reference Weston AH, Edwards G (1992) Recent progress in potassium channel opener pharmacology. Biochem Pharmacol 43:47–54CrossRef Weston AH, Edwards G (1992) Recent progress in potassium channel opener pharmacology. Biochem Pharmacol 43:47–54CrossRef
23.
go back to reference Revuelta MP, Cantabrana B, Hidalgo A (1997) Depolarization-dependent effect of flavonoids in rat uterine smooth muscle contraction elicited by CaCl2. Gen Pharmacol 29:847–857 Revuelta MP, Cantabrana B, Hidalgo A (1997) Depolarization-dependent effect of flavonoids in rat uterine smooth muscle contraction elicited by CaCl2. Gen Pharmacol 29:847–857
24.
go back to reference Sanchez de Rojas, Somoza VR, Ortega BT, Villar AM (1996) Isolation of vasodilatory active flavonoids from the traditional remedy Satureja obovata. Planta Med 62:272–274 Sanchez de Rojas, Somoza VR, Ortega BT, Villar AM (1996) Isolation of vasodilatory active flavonoids from the traditional remedy Satureja obovata. Planta Med 62:272–274
25.
go back to reference Ripoll C, Lederer WJ, Nichols CG (1990) Modulation of ATP-sensitive K+-channel activity and contractile behavior in mammalian ventricles by the potassium channel openers: cromakalim and RP49356. J Pharmacol Exp Ther 255:429–435 Ripoll C, Lederer WJ, Nichols CG (1990) Modulation of ATP-sensitive K+-channel activity and contractile behavior in mammalian ventricles by the potassium channel openers: cromakalim and RP49356. J Pharmacol Exp Ther 255:429–435
26.
go back to reference Osterrieder W (1988) Modefication of K+ conductance of heart cell membrane by BRL 34915. Naunyn Schmiedeberg’s Arch Pharmacol 33:93–97 Osterrieder W (1988) Modefication of K+ conductance of heart cell membrane by BRL 34915. Naunyn Schmiedeberg’s Arch Pharmacol 33:93–97
27.
go back to reference McPherson GA, Angus JA (1990) Characterization of responses to cromakalim and pinacidil in smooth and cardiac muscle by use of selective antagonists. Br J Pharmacol 100:201–206 McPherson GA, Angus JA (1990) Characterization of responses to cromakalim and pinacidil in smooth and cardiac muscle by use of selective antagonists. Br J Pharmacol 100:201–206
28.
go back to reference Tong X, Porter LM, Liu G, Chowdhury PD, Srivastava S, Pountney DJ, Yoshida H, Artman M, Fishman GI, Yu C, Iyer R, Morley GE, Gutstein DE, Coetzee WA (2006) Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291:H543–H551CrossRef Tong X, Porter LM, Liu G, Chowdhury PD, Srivastava S, Pountney DJ, Yoshida H, Artman M, Fishman GI, Yu C, Iyer R, Morley GE, Gutstein DE, Coetzee WA (2006) Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291:H543–H551CrossRef
29.
go back to reference Moreau C, Jacques H, Prosa AL, Dhahan M, Vivaudou M (2000) The molecular basis of the specificity of action of KATP channel openers. EMBO J 19:6644–6651CrossRef Moreau C, Jacques H, Prosa AL, Dhahan M, Vivaudou M (2000) The molecular basis of the specificity of action of KATP channel openers. EMBO J 19:6644–6651CrossRef
Metadata
Title
Selective bronchodilatory effect of Rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol
Authors
Arif-ullah Khan
Anwarul Hassan Gilani, PhD
Publication date
01-12-2006
Publisher
Steinkopff-Verlag
Published in
European Journal of Nutrition / Issue 8/2006
Print ISSN: 1436-6207
Electronic ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-006-0620-0

Other articles of this Issue 8/2006

European Journal of Nutrition 8/2006 Go to the issue

EDITORIAL

EDITORIAL

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine