Skip to main content
Top
Published in: BMC Oral Health 1/2022

Open Access 01-12-2022 | Research article

Selection of 1-mm venting or 2.5-mm screw access holes on implant crowns based on cement extrusion and retention capacity

Authors: Huangjun Zhou, Sixian Ye, Min Liu, Hao Feng, Cai Wen

Published in: BMC Oral Health | Issue 1/2022

Login to get access

Abstract

Background

This in vitro study aimed to provide evidence regarding the selection of hole diameters of implant crowns to reduce excess cement extrusion at the abutment margin, and to examine the maintenance of their retention capacity in anterior and posterior cement-retained implant crowns.

Methods

Six groups of implant crowns were prepared according to the position of the teeth and the size of their holes as follows: anterior crown without hole (ANH), anterior crown with 1-mm mini venting hole (AMH), anterior crown with 2.5-mm regular screw access hole (ARH), posterior crown without hole (PNH), posterior crown with 1-mm mini venting hole (PMH), and posterior crown with 2.5-mm regular screw access hole (PRH). Temporary cement was used to bond the crowns to the abutments. The mean amount of excess cement extrusion among the different groups at the abutment margin was calculated. Retentive strength under different hole designs was measured as the dislocation force of the crown using a universal testing machine. One-way ANOVA and Welch’s t-test were used to analyze the results.

Results

The average amounts of extruded excess cement were 18.96 ± 0.64, 1.78 ± 0.41, and 1.30 ± 0.41 mg in the ANH, AMH, and ARH groups, respectively, and 14.87 ± 0.36, 1.51 ± 0.40, and 0.82 ± 0.22 mg in the PNH, PMH, and PRH groups, respectively. The hole opening in the crowns could significantly reduce residual cement regardless of its size (p < 0.001). The mean retentive strengths were 54.16 ± 6.00, 47.63 ± 13.54, and 31.99 ± 7.75 N in the ANH, AMH, and ARH groups, respectively, and 57.84 ± 10.19, 53.22 ± 6.98, and 39.48 ± 5.12 N in the PNH, PMH, and PRH groups, respectively. The retention capacity of the implant crown deteriorated rapidly as the holes on the crown surface enlarged.

Conclusions

The presence of a hole on the implant crown reduced the amount of excess cement. The retention ability of the implant crowns deteriorated as the size of the hole increased. Considering the esthetic effect of the crown and the possible influence on crown retention, an implant crown with a 1-mm mini venting hole is a better clinical choice than the one with a 2.5-mm regular screw access hole.
Literature
1.
go back to reference Arisan V, Bolukbasi N, Ersanli S, Ozdemir T. Evaluation of 316 narrow diameter implants followed for 5–10 years: a clinical and radiographic retrospective study. Clin Oral Implants Res. 2010;21(3):296–307.CrossRef Arisan V, Bolukbasi N, Ersanli S, Ozdemir T. Evaluation of 316 narrow diameter implants followed for 5–10 years: a clinical and radiographic retrospective study. Clin Oral Implants Res. 2010;21(3):296–307.CrossRef
2.
go back to reference Fobbe H, Rammelsberg P, Lorenzo Bermejo J, Kappel S. The up-to-11-year survival and success of implants and abutment teeth under solely implant-supported and combined tooth-implant-supported double crown-retained removable dentures. Clin Oral Implants Res. 2019;30(11):1134–41.CrossRef Fobbe H, Rammelsberg P, Lorenzo Bermejo J, Kappel S. The up-to-11-year survival and success of implants and abutment teeth under solely implant-supported and combined tooth-implant-supported double crown-retained removable dentures. Clin Oral Implants Res. 2019;30(11):1134–41.CrossRef
3.
go back to reference Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10–16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. 2010;21(7):772–7.CrossRef Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10–16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. 2010;21(7):772–7.CrossRef
4.
go back to reference Pozzi A, Arcuri L, Fabbri G, Singer G, Londono J. Long-term survival and success of zirconia screw-retained implant-supported prostheses for up to 12 years: a retrospective multicenter study. J Prosthet Dent. 2021. Pozzi A, Arcuri L, Fabbri G, Singer G, Londono J. Long-term survival and success of zirconia screw-retained implant-supported prostheses for up to 12 years: a retrospective multicenter study. J Prosthet Dent. 2021.
5.
go back to reference Kim HS, Cho HA, Kim YY, Shin H. Implant survival and patient satisfaction in completely edentulous patients with immediate placement of implants: a retrospective study. BMC Oral Health. 2018;18(1):219.CrossRef Kim HS, Cho HA, Kim YY, Shin H. Implant survival and patient satisfaction in completely edentulous patients with immediate placement of implants: a retrospective study. BMC Oral Health. 2018;18(1):219.CrossRef
6.
go back to reference Baumer A, Toekan S, Saure D, Korner G. Survival and success of implants in a private periodontal practice: a 10 year retrospective study. BMC Oral Health. 2020;20(1):92.CrossRef Baumer A, Toekan S, Saure D, Korner G. Survival and success of implants in a private periodontal practice: a 10 year retrospective study. BMC Oral Health. 2020;20(1):92.CrossRef
7.
go back to reference Wittneben JG, Millen C, Bragger U. Clinical performance of screw- versus cement-retained fixed implant-supported reconstructions–a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):84–98.CrossRef Wittneben JG, Millen C, Bragger U. Clinical performance of screw- versus cement-retained fixed implant-supported reconstructions–a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):84–98.CrossRef
10.
go back to reference Heitz-Mayfield LJA, Salvi GE. Peri-implant mucositis. J Periodontol. 2018;89(Suppl 1):S257–66.CrossRef Heitz-Mayfield LJA, Salvi GE. Peri-implant mucositis. J Periodontol. 2018;89(Suppl 1):S257–66.CrossRef
11.
go back to reference Wilson TG Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009;80(9):1388–92.CrossRef Wilson TG Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009;80(9):1388–92.CrossRef
12.
go back to reference Higginbottom F, Belser U, Jones JD, Keith SE. Prosthetic management of implants in the esthetic zone. Int J Oral Maxillofac Implants. 2004;19(Suppl):62–72.PubMed Higginbottom F, Belser U, Jones JD, Keith SE. Prosthetic management of implants in the esthetic zone. Int J Oral Maxillofac Implants. 2004;19(Suppl):62–72.PubMed
13.
go back to reference Staubli N, Walter C, Schmidt JC, Weiger R, Zitzmann NU. Excess cement and the risk of peri-implant disease—a systematic review. Clin Oral Implants Res. 2017;28(10):1278–90.CrossRef Staubli N, Walter C, Schmidt JC, Weiger R, Zitzmann NU. Excess cement and the risk of peri-implant disease—a systematic review. Clin Oral Implants Res. 2017;28(10):1278–90.CrossRef
14.
go back to reference Linkevicius T, Vindasiute E, Puisys A, Peciuliene V. The influence of margin location on the amount of undetected cement excess after delivery of cement-retained implant restorations. Clin Oral Implants Res. 2011;22(12):1379–84.CrossRef Linkevicius T, Vindasiute E, Puisys A, Peciuliene V. The influence of margin location on the amount of undetected cement excess after delivery of cement-retained implant restorations. Clin Oral Implants Res. 2011;22(12):1379–84.CrossRef
15.
go back to reference Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24(1):71–6.CrossRef Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24(1):71–6.CrossRef
16.
go back to reference Gehrke P, Bleuel K, Fischer C, Sader R. Influence of margin location and luting material on the amount of undetected cement excess on CAD/CAM implant abutments and cement-retained zirconia crowns: an in-vitro study. BMC Oral Health. 2019;19(1):111.CrossRef Gehrke P, Bleuel K, Fischer C, Sader R. Influence of margin location and luting material on the amount of undetected cement excess on CAD/CAM implant abutments and cement-retained zirconia crowns: an in-vitro study. BMC Oral Health. 2019;19(1):111.CrossRef
17.
go back to reference Wadhwani C, Piñeyro A, Hess T, Zhang H, Chung KH. Effect of implant abutment modification on the extrusion of excess cement at the crown-abutment margin for cement-retained implant restorations. Int J Oral Maxillofac Implants. 2011;26(6):1241–6.PubMed Wadhwani C, Piñeyro A, Hess T, Zhang H, Chung KH. Effect of implant abutment modification on the extrusion of excess cement at the crown-abutment margin for cement-retained implant restorations. Int J Oral Maxillofac Implants. 2011;26(6):1241–6.PubMed
18.
go back to reference Korsch M, Obst U, Walther W. Cement-associated peri-implantitis: a retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin Oral Implants Res. 2014;25(7):797–802.CrossRef Korsch M, Obst U, Walther W. Cement-associated peri-implantitis: a retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin Oral Implants Res. 2014;25(7):797–802.CrossRef
19.
go back to reference Zaugg LK, Zehnder I, Rohr N, Fischer J, Zitzmann NU. The effects of crown venting or pre-cementing of CAD/CAM-constructed all-ceramic crowns luted on YTZ implants on marginal cement excess. Clin Oral Implants Res. 2018;29(1):82–90.CrossRef Zaugg LK, Zehnder I, Rohr N, Fischer J, Zitzmann NU. The effects of crown venting or pre-cementing of CAD/CAM-constructed all-ceramic crowns luted on YTZ implants on marginal cement excess. Clin Oral Implants Res. 2018;29(1):82–90.CrossRef
20.
go back to reference Jimenez RA, Vargas-Koudriavtsev T. Effect of preseating, screw access opening, and vent holes on extrusion of excess cement at the crown-abutment margin and associated tensile force for cement-retained implant restorations. Int J Oral Maxillofac Implants. 2016;31(4):807–12.CrossRef Jimenez RA, Vargas-Koudriavtsev T. Effect of preseating, screw access opening, and vent holes on extrusion of excess cement at the crown-abutment margin and associated tensile force for cement-retained implant restorations. Int J Oral Maxillofac Implants. 2016;31(4):807–12.CrossRef
21.
go back to reference Patel D, Invest JC, Tredwin CJ, Setchell DJ, Moles DR. An analysis of the effect of a vent hole on excess cement expressed at the crown-abutment margin for cement-retained implant crowns. J Prosthodont. 2009;18(1):54–9.CrossRef Patel D, Invest JC, Tredwin CJ, Setchell DJ, Moles DR. An analysis of the effect of a vent hole on excess cement expressed at the crown-abutment margin for cement-retained implant crowns. J Prosthodont. 2009;18(1):54–9.CrossRef
22.
go back to reference Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res. 1991;2(2):81–90.CrossRef Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res. 1991;2(2):81–90.CrossRef
23.
go back to reference Listgarten MA, Lang NP, Schroeder HE, Schroeder A. Periodontal tissues and their counterparts around endosseous implants [corrected and republished with original paging, article orginally printed in Clin Oral Implants Res 1991 Jan-Mar;2(1):1–19]. Clin Oral Implants Res. 1991;2(3):1–19.CrossRef Listgarten MA, Lang NP, Schroeder HE, Schroeder A. Periodontal tissues and their counterparts around endosseous implants [corrected and republished with original paging, article orginally printed in Clin Oral Implants Res 1991 Jan-Mar;2(1):1–19]. Clin Oral Implants Res. 1991;2(3):1–19.CrossRef
24.
go back to reference Schroeder HE, Listgarten MA. The gingival tissues: the architecture of periodontal protection. Periodontol. 2000;1997(13):91–120. Schroeder HE, Listgarten MA. The gingival tissues: the architecture of periodontal protection. Periodontol. 2000;1997(13):91–120.
25.
go back to reference Schupbach P, Glauser R. The defense architecture of the human periimplant mucosa: a histological study. J Prosthet Dent. 2007;97(6):S15–25.CrossRef Schupbach P, Glauser R. The defense architecture of the human periimplant mucosa: a histological study. J Prosthet Dent. 2007;97(6):S15–25.CrossRef
26.
go back to reference Hess TA. A technique to eliminate subgingival cement adhesion to implant abutments by using polytetrafluoroethylene tape. J Prosthet Dent. 2014;112(2):365–8.CrossRef Hess TA. A technique to eliminate subgingival cement adhesion to implant abutments by using polytetrafluoroethylene tape. J Prosthet Dent. 2014;112(2):365–8.CrossRef
27.
go back to reference Sattar MM, Patel M, Alani A. Clinical applications of polytetrafluoroethylene (PTFE) tape in restorative dentistry. Br Dent J. 2017;222(3):151–8.CrossRef Sattar MM, Patel M, Alani A. Clinical applications of polytetrafluoroethylene (PTFE) tape in restorative dentistry. Br Dent J. 2017;222(3):151–8.CrossRef
28.
go back to reference Begum Z, Sonika R, Pratik C. Effect of different cementation techniques on retained excess cement and uniaxial retention of the implant-supported prosthesis: an in vitro study. Int J Oral Maxillofac Implants. 2014;29(6):1333–7.CrossRef Begum Z, Sonika R, Pratik C. Effect of different cementation techniques on retained excess cement and uniaxial retention of the implant-supported prosthesis: an in vitro study. Int J Oral Maxillofac Implants. 2014;29(6):1333–7.CrossRef
29.
go back to reference Haas RC, Haas SE. Cement shield membrane technique to minimize residual cement on implant crowns: a dental technique. J Prosthet Dent. 2020;123(2):223–7.CrossRef Haas RC, Haas SE. Cement shield membrane technique to minimize residual cement on implant crowns: a dental technique. J Prosthet Dent. 2020;123(2):223–7.CrossRef
30.
go back to reference Dumbrigue HB, Abanomi AA, Cheng LL. Techniques to minimize excess luting agent in cement-retained implant restorations. J Prosthet Dent. 2002;87(1):112–4.CrossRef Dumbrigue HB, Abanomi AA, Cheng LL. Techniques to minimize excess luting agent in cement-retained implant restorations. J Prosthet Dent. 2002;87(1):112–4.CrossRef
31.
go back to reference Wang W, Chang J, Wang HM, Gu XH. Effects of precementation on minimizing residual cement around the marginal area of dental implants. J Prosthet Dent. 2020;123(4):622–9.CrossRef Wang W, Chang J, Wang HM, Gu XH. Effects of precementation on minimizing residual cement around the marginal area of dental implants. J Prosthet Dent. 2020;123(4):622–9.CrossRef
32.
go back to reference Pan YH, Ramp LC, Lin CK, Liu PR. Comparison of 7 luting protocols and their effect on the retention and marginal leakage of a cement-retained dental implant restoration. Int J Oral Maxillofac Implants. 2006;21(4):587–92.PubMed Pan YH, Ramp LC, Lin CK, Liu PR. Comparison of 7 luting protocols and their effect on the retention and marginal leakage of a cement-retained dental implant restoration. Int J Oral Maxillofac Implants. 2006;21(4):587–92.PubMed
33.
go back to reference Weininger B, McGlumphy E, Beck M. Esthetic evaluation of materials used to fill access holes of screw-retained implant crowns. J Oral Implantol. 2008;34(3):145–9.CrossRef Weininger B, McGlumphy E, Beck M. Esthetic evaluation of materials used to fill access holes of screw-retained implant crowns. J Oral Implantol. 2008;34(3):145–9.CrossRef
34.
go back to reference Saboury A, Mahshid M, Tabatabaian F, Moghadam L. Effect of screw access hole design on the fracture resistance of implant-supported zirconia-based restorations. J Esthet Restor Dent. 2018;30(6):545–50.CrossRef Saboury A, Mahshid M, Tabatabaian F, Moghadam L. Effect of screw access hole design on the fracture resistance of implant-supported zirconia-based restorations. J Esthet Restor Dent. 2018;30(6):545–50.CrossRef
35.
go back to reference Du L, Li Z, Chang X, Rahhal O, Qin B, Wen X, Zhou D. Effects of the screw-access hole diameter on the biomechanical behaviors of 4 types of cement-retained implant prosthodontic systems and their surrounding cortical bones: a 3D finite element analysis. Implant Dent. 2018;27(5):555–63.CrossRef Du L, Li Z, Chang X, Rahhal O, Qin B, Wen X, Zhou D. Effects of the screw-access hole diameter on the biomechanical behaviors of 4 types of cement-retained implant prosthodontic systems and their surrounding cortical bones: a 3D finite element analysis. Implant Dent. 2018;27(5):555–63.CrossRef
36.
go back to reference Hussien AN, Rayyan MM, Sayed NM, Segaan LG, Goodacre CJ, Kattadiyil MT. Effect of screw-access channels on the fracture resistance of 3 types of ceramic implant-supported crowns. J Prosthet Dent. 2016;116(2):214–20.CrossRef Hussien AN, Rayyan MM, Sayed NM, Segaan LG, Goodacre CJ, Kattadiyil MT. Effect of screw-access channels on the fracture resistance of 3 types of ceramic implant-supported crowns. J Prosthet Dent. 2016;116(2):214–20.CrossRef
37.
go back to reference Muller L, Rauch A, Reissmann DR, Schierz O. Impact of cement type and abutment height on pull-off force of zirconia reinforced lithium silicate crowns on titanium implant stock abutments: an in vitro study. BMC Oral Health. 2021;21(1):592.CrossRef Muller L, Rauch A, Reissmann DR, Schierz O. Impact of cement type and abutment height on pull-off force of zirconia reinforced lithium silicate crowns on titanium implant stock abutments: an in vitro study. BMC Oral Health. 2021;21(1):592.CrossRef
38.
go back to reference Nagasawa Y, Hibino Y, Nakajima H. Retention of crowns cemented on implant abutments with temporary cements. Dent Mater J. 2014;33(6):835–44.CrossRef Nagasawa Y, Hibino Y, Nakajima H. Retention of crowns cemented on implant abutments with temporary cements. Dent Mater J. 2014;33(6):835–44.CrossRef
39.
go back to reference Gervais MJ, Wilson PR. A rationale for retrievability of fixed, implant-supported prostheses: a complication-based analysis. Int J Prosthodont. 2007;20(1):13–24.PubMed Gervais MJ, Wilson PR. A rationale for retrievability of fixed, implant-supported prostheses: a complication-based analysis. Int J Prosthodont. 2007;20(1):13–24.PubMed
40.
go back to reference Heinemann F, Mundt T, Biffar R. Retrospective evaluation of temporary cemented, tooth and implant supported fixed partial dentures. J Craniomaxillofac Surg. 2006;34(Suppl 2):86–90.CrossRef Heinemann F, Mundt T, Biffar R. Retrospective evaluation of temporary cemented, tooth and implant supported fixed partial dentures. J Craniomaxillofac Surg. 2006;34(Suppl 2):86–90.CrossRef
Metadata
Title
Selection of 1-mm venting or 2.5-mm screw access holes on implant crowns based on cement extrusion and retention capacity
Authors
Huangjun Zhou
Sixian Ye
Min Liu
Hao Feng
Cai Wen
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2022
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-022-02145-x

Other articles of this Issue 1/2022

BMC Oral Health 1/2022 Go to the issue