Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2013

01-12-2013 | Retinal Disorders

Segmental reproducibility of retinal blood flow velocity measurements using retinal function imager

Authors: Jay Chhablani, Dirk-Uwe Bartsch, Lingyun Cheng, Laura Gomez, Rayan A. Alshareef, Sami S. Rezeq, Sunir J. Garg, Zvia Burgansky-Eliash, William R. Freeman

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 12/2013

Login to get access

Abstract

Background

To evaluate the reproducibility of blood flow velocity measurements of individual retinal blood vessel segments using retinal function imager (RFI).

Methods

Eighteen eyes of 15 healthy subjects were enrolled prospectively at three centers. All subjects underwent RFI imaging in two separate sessions 15 min apart by a single experienced photographer at each center. An average of five to seven serial RFI images were obtained. All images were transferred electronically to one center, and were analyzed by a single observer. Multiple blood vessel segments (each shorter than 100 μm) were co-localized on first and second session images taken at different times of the same fundus using built-in software. Velocities of corresponding segments were determined, and then the inter-session reproducibility of flow velocity was assessed by the concordance correlation co-efficient (CCC), coefficient of reproducibility (CR), and coefficient of variance (CV).

Results

Inter-session CCC for flow velocity was 0.97 (95% confidence interval (CI), 0.966 to 0.9797). The CR was 1.49 mm/sec (95% CI, 1.39 to 1.59 mm/sec), and CV was 10.9%. The average arterial blood flow velocity was 3.16 mm/sec, and average venous blood flow velocity was 3.15 mm/sec. The CR for arterial and venous blood flow velocity was 1.61 mm/sec and 1.27 mm/sec respectively.

Conclusion

RFI provides reproducible measurements for retinal blood flow velocity for individual blood vessel segments, with 10.9% variability.
Literature
1.
go back to reference Shoshani Y, Harris A, Shoja MM, Arieli Y, Ehrlich R, Primus S, Ciulla T, Cantor A, Wirostko B, Siesky BA (2012) Impaired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clin Experiment Ophthalmol 40:697–705PubMedCrossRef Shoshani Y, Harris A, Shoja MM, Arieli Y, Ehrlich R, Primus S, Ciulla T, Cantor A, Wirostko B, Siesky BA (2012) Impaired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clin Experiment Ophthalmol 40:697–705PubMedCrossRef
2.
go back to reference Chen HC, Gupta A, Wiek J, Kohner EM (1998) Retinal blood flow in nonischemic central retinal vein occlusion. Ophthalmology 105:772–775PubMedCrossRef Chen HC, Gupta A, Wiek J, Kohner EM (1998) Retinal blood flow in nonischemic central retinal vein occlusion. Ophthalmology 105:772–775PubMedCrossRef
3.
go back to reference Williamson TH, Baxter GM (1994) Central retinal vein occlusion, an investigation by color Doppler imaging. Blood velocity characteristics and prediction of iris neovascularization. Ophthalmology 101:1362–1372PubMedCrossRef Williamson TH, Baxter GM (1994) Central retinal vein occlusion, an investigation by color Doppler imaging. Blood velocity characteristics and prediction of iris neovascularization. Ophthalmology 101:1362–1372PubMedCrossRef
4.
go back to reference Friedman E, Krupsky S, Lane AM, Oak SS, Friedman ES, Egan K, Gragoudas ES (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646PubMedCrossRef Friedman E, Krupsky S, Lane AM, Oak SS, Friedman ES, Egan K, Gragoudas ES (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646PubMedCrossRef
5.
go back to reference Deokule S, Vizzeri G, Boehm A, Bowd C, Weinreb RN (2010) Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma. J Glaucoma 19:293–298PubMed Deokule S, Vizzeri G, Boehm A, Bowd C, Weinreb RN (2010) Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma. J Glaucoma 19:293–298PubMed
6.
go back to reference Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393PubMedCrossRef Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393PubMedCrossRef
7.
go back to reference Chen CS, Miller NR (2007) Ocular ischemic syndrome: review of clinical presentations, etiology, investigation, and management. Compr Ophthalmol Update 8:17–28PubMed Chen CS, Miller NR (2007) Ocular ischemic syndrome: review of clinical presentations, etiology, investigation, and management. Compr Ophthalmol Update 8:17–28PubMed
8.
go back to reference Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29PubMedCrossRef Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29PubMedCrossRef
9.
go back to reference Wang L, Fortune B, Cull G, McElwain KM, Cioffi GA (2007) Microspheres method for ocular blood flow measurement in rats: size and dose optimization. Exp Eye Res 84:108–117PubMedCrossRef Wang L, Fortune B, Cull G, McElwain KM, Cioffi GA (2007) Microspheres method for ocular blood flow measurement in rats: size and dose optimization. Exp Eye Res 84:108–117PubMedCrossRef
10.
go back to reference Wang L, Grant C, Fortune B, Cioffi GA (2008) Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. Exp Eye Res 86:908–913PubMedCrossRef Wang L, Grant C, Fortune B, Cioffi GA (2008) Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. Exp Eye Res 86:908–913PubMedCrossRef
11.
go back to reference Chemtob S, Beharry K, Rex J, Chatterjee T, Varma DR, Aranda JV (1991) Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Invest Ophthalmol Vis Sci 32:1799–1807PubMed Chemtob S, Beharry K, Rex J, Chatterjee T, Varma DR, Aranda JV (1991) Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Invest Ophthalmol Vis Sci 32:1799–1807PubMed
12.
go back to reference Horio N, Horiguchi M (2004) Retinal blood flow analysis using intraoperative video fluorescein angiography combined with optical fiber-free intravitreal surgery system. Am J Ophthalmol 138:1082–1083PubMedCrossRef Horio N, Horiguchi M (2004) Retinal blood flow analysis using intraoperative video fluorescein angiography combined with optical fiber-free intravitreal surgery system. Am J Ophthalmol 138:1082–1083PubMedCrossRef
13.
go back to reference Yang Y, Kim S, Kim J (1997) Fluorescent dots in fluorescein angiography and fluorescein leukocyte angiography using a scanning laser ophthalmoscope in humans. Ophthalmology 104:1670–1676PubMedCrossRef Yang Y, Kim S, Kim J (1997) Fluorescent dots in fluorescein angiography and fluorescein leukocyte angiography using a scanning laser ophthalmoscope in humans. Ophthalmology 104:1670–1676PubMedCrossRef
14.
go back to reference Yang Y, Kim S, Kim J (1997) Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits. Graefes Arch Clin Exp Ophthalmol 235:27–31PubMedCrossRef Yang Y, Kim S, Kim J (1997) Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits. Graefes Arch Clin Exp Ophthalmol 235:27–31PubMedCrossRef
15.
go back to reference Yang Y, Moon S, Lee S, Kim J (1996) Measurement of retinal blood flow with fluorescein leucocyte angiography using a scanning laser ophthalmoscope in rabbits. Br J Ophthalmol 80:475–479PubMedCentralPubMedCrossRef Yang Y, Moon S, Lee S, Kim J (1996) Measurement of retinal blood flow with fluorescein leucocyte angiography using a scanning laser ophthalmoscope in rabbits. Br J Ophthalmol 80:475–479PubMedCentralPubMedCrossRef
16.
17.
go back to reference Rechtman E, Harris A, Kumar R, Cantor LB, Ventrapragada S, Desai M, Friedman S, Kagemann L, Garzozi HJ (2003) An update on retinal circulation assessment technologies. Curr Eye Res 27:329–343PubMedCrossRef Rechtman E, Harris A, Kumar R, Cantor LB, Ventrapragada S, Desai M, Friedman S, Kagemann L, Garzozi HJ (2003) An update on retinal circulation assessment technologies. Curr Eye Res 27:329–343PubMedCrossRef
18.
go back to reference Wang Y, Lu A, Gil-Flamer J, Tan O, Izatt JA, Huang D (2009) Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol 93:634–637PubMedCentralPubMedCrossRef Wang Y, Lu A, Gil-Flamer J, Tan O, Izatt JA, Huang D (2009) Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol 93:634–637PubMedCentralPubMedCrossRef
19.
go back to reference Jonescu-Cuypers CP, Harris A, Wilson R, Kagemann L, Mavroudis LV, Topouzis F, Coleman AL (2004) Reproducibility of the Heidelberg retinal flowmeter in determining low perfusion areas in peripapillary retina. Br J Ophthalmol 88:1266–1269PubMedCentralPubMedCrossRef Jonescu-Cuypers CP, Harris A, Wilson R, Kagemann L, Mavroudis LV, Topouzis F, Coleman AL (2004) Reproducibility of the Heidelberg retinal flowmeter in determining low perfusion areas in peripapillary retina. Br J Ophthalmol 88:1266–1269PubMedCentralPubMedCrossRef
20.
go back to reference Yoshida A, Feke GT, Mori F, Nagaoka T, Fujio N, Ogasawara H, Konno S, McMeel JW (2003) Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol 135:356–361PubMedCrossRef Yoshida A, Feke GT, Mori F, Nagaoka T, Fujio N, Ogasawara H, Konno S, McMeel JW (2003) Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol 135:356–361PubMedCrossRef
21.
go back to reference Nagahara M, Tamaki Y, Tomidokoro A, Araie M (2011) In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest Ophthalmol Vis Sci 52:87–92PubMedCrossRef Nagahara M, Tamaki Y, Tomidokoro A, Araie M (2011) In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest Ophthalmol Vis Sci 52:87–92PubMedCrossRef
22.
go back to reference Kagemann L, Wollstein G, Ishikawa H, Townsend KA, Schuman JS (2009) Validation of spectral domain optical coherence tomographic Doppler shifts using an in vitro flow model. Invest Ophthalmol Vis Sci 50:702–706PubMedCentralPubMedCrossRef Kagemann L, Wollstein G, Ishikawa H, Townsend KA, Schuman JS (2009) Validation of spectral domain optical coherence tomographic Doppler shifts using an in vitro flow model. Invest Ophthalmol Vis Sci 50:702–706PubMedCentralPubMedCrossRef
23.
go back to reference Burgansky-Eliash Z, Nelson DA, Bar-Tal OP, Lowenstein A, Grinvald A, Barak A (2010) Reduced retinal blood flow velocity in diabetic retinopathy. Retina 30:765–773PubMedCrossRef Burgansky-Eliash Z, Nelson DA, Bar-Tal OP, Lowenstein A, Grinvald A, Barak A (2010) Reduced retinal blood flow velocity in diabetic retinopathy. Retina 30:765–773PubMedCrossRef
24.
go back to reference Birger Y, Blumenfeld O, Bartov E, Burgansky-Eliash Z (2011) Reduced retinal blood flow velocity in severe hyperlipidemia measured by the retinal function imager. Graefes Arch Clin Exp Ophthalmol 249:1587–1590PubMedCrossRef Birger Y, Blumenfeld O, Bartov E, Burgansky-Eliash Z (2011) Reduced retinal blood flow velocity in severe hyperlipidemia measured by the retinal function imager. Graefes Arch Clin Exp Ophthalmol 249:1587–1590PubMedCrossRef
25.
go back to reference Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Krastel H, Jonas JB (2011) Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 249:1855–1858PubMedCrossRef Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Krastel H, Jonas JB (2011) Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 249:1855–1858PubMedCrossRef
26.
go back to reference Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Jonas JB (2011) Central serous chorioretinopathy shows reduced retinal flow circulation in retinal function imaging (RFI). Acta Ophthalmol 89:e479–e482PubMedCrossRef Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Jonas JB (2011) Central serous chorioretinopathy shows reduced retinal flow circulation in retinal function imaging (RFI). Acta Ophthalmol 89:e479–e482PubMedCrossRef
27.
go back to reference Barak A, Burgansky-Eliash Z, Barash H, Nelson DA, Grinvald A, Loewenstein A (2012) The effect of intravitreal bevacizumab (Avastin) injection on retinal blood flow velocity in patients with choroidal neovascularization. Eur J Ophthalmol 22:423–430PubMedCrossRef Barak A, Burgansky-Eliash Z, Barash H, Nelson DA, Grinvald A, Loewenstein A (2012) The effect of intravitreal bevacizumab (Avastin) injection on retinal blood flow velocity in patients with choroidal neovascularization. Eur J Ophthalmol 22:423–430PubMedCrossRef
28.
go back to reference Landa G, Rosen RB (2010) New patterns of retinal collateral circulation are exposed by a retinal functional imager (RFI). Br J Ophthalmol 94:54–58PubMedCrossRef Landa G, Rosen RB (2010) New patterns of retinal collateral circulation are exposed by a retinal functional imager (RFI). Br J Ophthalmol 94:54–58PubMedCrossRef
29.
go back to reference Landa G, Jangi AA, Garcia PM, Rosen RB (2012) Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int Ophthalmol 32:211–215PubMedCrossRef Landa G, Jangi AA, Garcia PM, Rosen RB (2012) Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int Ophthalmol 32:211–215PubMedCrossRef
30.
go back to reference Nelson DA, Krupsky S, Pollack A, Aloni E, Belkin M, Vanzetta I, Rosner M, Grinvald A (2005) Special report: Noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 36:57–66PubMed Nelson DA, Krupsky S, Pollack A, Aloni E, Belkin M, Vanzetta I, Rosner M, Grinvald A (2005) Special report: Noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 36:57–66PubMed
31.
go back to reference Joos KM, Pillunat LE, Knighton RW, Anderson DR, Feuer WJ (1997) Reproducibility of laser Doppler flowmetry in the human optic nerve head. J Glaucoma 6:212–216PubMed Joos KM, Pillunat LE, Knighton RW, Anderson DR, Feuer WJ (1997) Reproducibility of laser Doppler flowmetry in the human optic nerve head. J Glaucoma 6:212–216PubMed
32.
go back to reference Delori FC, Webb RH, Sliney DH (2007) Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis 24:1250–1265PubMedCrossRef Delori FC, Webb RH, Sliney DH (2007) Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis 24:1250–1265PubMedCrossRef
33.
go back to reference Nicolela MT, Hnik P, Schulzer M, Drance SM (1997) Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J Glaucoma 6:157–164PubMed Nicolela MT, Hnik P, Schulzer M, Drance SM (1997) Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J Glaucoma 6:157–164PubMed
Metadata
Title
Segmental reproducibility of retinal blood flow velocity measurements using retinal function imager
Authors
Jay Chhablani
Dirk-Uwe Bartsch
Lingyun Cheng
Laura Gomez
Rayan A. Alshareef
Sami S. Rezeq
Sunir J. Garg
Zvia Burgansky-Eliash
William R. Freeman
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 12/2013
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-013-2360-1

Other articles of this Issue 12/2013

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2013 Go to the issue

Letter to the Editor (by invitation)

Macular pigment optical density in aging eye