Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2020

Open Access 01-12-2020 | Sectio Ceasarea | Research article

Prediction of vaginal birth after cesarean delivery in Southeast China: a retrospective cohort study

Authors: Hua-Le Zhang, Liang-Hui Zheng, Li-Chun Cheng, Zhao-Dong Liu, Lu Yu, Qin Han, Geng-Yun Miao, Jian-Ying Yan

Published in: BMC Pregnancy and Childbirth | Issue 1/2020

Login to get access

Abstract

Background

We aimed to develop and validate a nomogram for effective prediction of vaginal birth after cesarean (VBAC) and guide future clinical application.

Methods

We retrospectively analyzed data from hospitalized pregnant women who underwent trial of labor after cesarean (TOLAC), at the Fujian Provincial Maternity and Children’s Hospital, between October 2015 and October 2017. Briefly, we included singleton pregnant women, at a gestational age above 37 weeks who underwent a primary cesarean section, in the study. We then extracted their sociodemographic data and clinical characteristics, and randomly divided the samples into training and validation sets. We employed the least absolute shrinkage and selection operator (LASSO) regression to select variables and construct VBAC success rate in the training set. Thereafter, we validated the nomogram using the concordance index (C-index), decision curve analysis (DCA), and calibration curves. Finally, we adopted the Grobman’s model to perform comparisons with published VBAC prediction models.

Results

Among the 708 pregnant women included according to inclusion criteria, 586 (82.77%) patients were successfully for VBAC. Multivariate logistic regression models revealed that maternal height (OR, 1.11; 95% CI, 1.04 to 1.19), maternal BMI at delivery (OR, 0.89; 95% CI, 0.79 to 1.00), fundal height (OR, 0.71; 95% CI, 0.58 to 0.88), cervix Bishop score (OR, 3.27; 95% CI, 2.49 to 4.45), maternal age at delivery (OR, 0.90; 95% CI, 0.82 to 0.98), gestational age (OR, 0.33; 95% CI, 0.17 to 0.62) and history of vaginal delivery (OR, 2.92; 95% CI, 1.42 to 6.48) were independently associated with successful VBAC. The constructed predictive model showed better discrimination than that from the Grobman’s model in the validation series (c-index 0.906 VS 0.694, respectively). On the other hand, decision curve analysis revealed that the new model had better clinical net benefits than the Grobman’s model.

Conclusions

VBAC will aid in reducing the rate of cesarean sections in China. In clinical practice, the TOLAC prediction model will help improve VBAC’s success rate, owing to its contribution to reducing secondary cesarean section.
Literature
3.
go back to reference Ma RMDT, Lao TT. VBAC should be encouraged as a means to reduce the caesarean section rate in China: FOR: VBAC reduces not only the caesarean section rate but also other associated issues. BJOG. 2016;123(Suppl):3 10. Ma RMDT, Lao TT. VBAC should be encouraged as a means to reduce the caesarean section rate in China: FOR: VBAC reduces not only the caesarean section rate but also other associated issues. BJOG. 2016;123(Suppl):3 10.
6.
go back to reference Obstetricians ACo, Gynecologists. ACOG Practice Bulletin No. 205: Vaginal Birth After Cesarean Delivery. Obstet Gynecol. 2019:133(2). Obstetricians ACo, Gynecologists. ACOG Practice Bulletin No. 205: Vaginal Birth After Cesarean Delivery. Obstet Gynecol. 2019:133(2).
7.
go back to reference Wymer KM, Shih Y-CT, Plunkett BA. The cost-effectiveness of a trial of labor accrues with multiple subsequent vaginal deliveries. Am J Obstet Gynecol 2014;211(1):56. e1–56. e12. Wymer KM, Shih Y-CT, Plunkett BA. The cost-effectiveness of a trial of labor accrues with multiple subsequent vaginal deliveries. Am J Obstet Gynecol 2014;211(1):56. e1–56. e12.
8.
go back to reference Gynaecologists RCoOa. Birth after previous caesarean birth. Green-top Guide. 2015:45. Gynaecologists RCoOa. Birth after previous caesarean birth. Green-top Guide. 2015:45.
10.
go back to reference Landon MB, Hauth JC, Leveno KJ, et al. Maternal and perinatal outcomes associated with a trial of labor after prior cesarean delivery. N Engl J Med. 2004;351(25):2581–9.CrossRef Landon MB, Hauth JC, Leveno KJ, et al. Maternal and perinatal outcomes associated with a trial of labor after prior cesarean delivery. N Engl J Med. 2004;351(25):2581–9.CrossRef
12.
go back to reference Grobman WA, Lai Y, Landon MB, et al. Development of a nomogram for prediction of vaginal birth after cesarean delivery. Obstet Gynecol. 2007;109:806–12.CrossRef Grobman WA, Lai Y, Landon MB, et al. Development of a nomogram for prediction of vaginal birth after cesarean delivery. Obstet Gynecol. 2007;109:806–12.CrossRef
14.
go back to reference Li Y-X, Bai Z, Long D-J, et al. Predicting the success of vaginal birth after caesarean delivery: a retrospective cohort study in China. BMJ Open. 2019;9:1–8. 10.1136.CrossRef Li Y-X, Bai Z, Long D-J, et al. Predicting the success of vaginal birth after caesarean delivery: a retrospective cohort study in China. BMJ Open. 2019;9:1–8. 10.​1136.CrossRef
16.
go back to reference Timmerman D. Re: Validation of prediction model for successful vaginal birth after Cesarean delivery based on sonographic assessment of hysterotomy scar. A. Baranov, K. A. Salvesen and O. Vikhareva. Ultrasound Obstet Gynecol 2018; 51: 189–193. Ultrasound Obstet Gynecol. 2018;51(2):167. https://doi.org/10.1002/uog.18999.CrossRefPubMed Timmerman D. Re: Validation of prediction model for successful vaginal birth after Cesarean delivery based on sonographic assessment of hysterotomy scar. A. Baranov, K. A. Salvesen and O. Vikhareva. Ultrasound Obstet Gynecol 2018; 51: 189–193. Ultrasound Obstet Gynecol. 2018;51(2):167. https://​doi.​org/​10.​1002/​uog.​18999.CrossRefPubMed
22.
go back to reference Eden KB, McDonagh M, Denman MA, et al. New insights on vaginal birth after cesarean: can it be predicted? Obstet Gynecol. 2010;116(4):967–81.CrossRef Eden KB, McDonagh M, Denman MA, et al. New insights on vaginal birth after cesarean: can it be predicted? Obstet Gynecol. 2010;116(4):967–81.CrossRef
24.
go back to reference Camhi SM, Bray GA, Bouchard C, et al. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. Obesity. 2011;19(2):402–8.CrossRef Camhi SM, Bray GA, Bouchard C, et al. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. Obesity. 2011;19(2):402–8.CrossRef
28.
go back to reference Kacem Y, Cannie MM, Kadji C, et al. Fetal weight estimation: comparison of two-dimensional US and MR imaging assessments. Radiology. 2013;267(3):902–10.CrossRef Kacem Y, Cannie MM, Kadji C, et al. Fetal weight estimation: comparison of two-dimensional US and MR imaging assessments. Radiology. 2013;267(3):902–10.CrossRef
30.
go back to reference Grisaru-Granovsky S, Bas-Lando M, Drukker L, et al. Epidural analgesia at trial of labor after cesarean (TOLAC): a significant adjunct to successful vaginal birth after cesarean (VBAC). J Perinat Med 2018;46(3): 261–269. doi: https://doi.org/10.1515/jpm-2016-0382 [published Online First: 2017/06/18]. Grisaru-Granovsky S, Bas-Lando M, Drukker L, et al. Epidural analgesia at trial of labor after cesarean (TOLAC): a significant adjunct to successful vaginal birth after cesarean (VBAC). J Perinat Med 2018;46(3): 261–269. doi: https://​doi.​org/​10.​1515/​jpm-2016-0382 [published Online First: 2017/06/18].
Metadata
Title
Prediction of vaginal birth after cesarean delivery in Southeast China: a retrospective cohort study
Authors
Hua-Le Zhang
Liang-Hui Zheng
Li-Chun Cheng
Zhao-Dong Liu
Lu Yu
Qin Han
Geng-Yun Miao
Jian-Ying Yan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2020
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-020-03233-y

Other articles of this Issue 1/2020

BMC Pregnancy and Childbirth 1/2020 Go to the issue