Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies

Authors: Franklin L. Nobrega, Débora Ferreira, Ivone M. Martins, Maria Suarez-Diez, Joana Azeredo, Leon D. Kluskens, Lígia R. Rodrigues

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Claudin-low breast carcinoma represents 19% of all breast cancer cases and is characterized by an aggressive progression with metastatic nature and high rates of relapse. Due to a lack of known specific molecular biomarkers for this breast cancer subtype, there are no targeted therapies available, which results in the worst prognosis of all breast cancer subtypes. Hence, the identification of novel biomarkers for this type of breast cancer is highly relevant for an early diagnosis. Additionally, claudin-low breast carcinoma peptide ligands can be used to design powerful drug delivery systems that specifically target this type of breast cancer.

Methods

In this work, we propose the identification of peptides for the specific recognition of MDA-MB-231, a cell line representative of claudin-low breast cancers, using phage display (both conventional panning and BRASIL). Binding assays, such as phage forming units and ELISA, were performed to select the most interesting peptides (i.e., specific to the target cells) and bioinformatics approaches were applied to putatively identify the biomarkers to which these peptides bind.

Results

Two peptides were selected using this methodology specifically targeting MDA-MB-231 cells, as demonstrated by a 4 to 9 log higher affinity as compared to control cells. The use of bioinformatics approaches provided relevant insights into possible cell surface targets for each peptide identified.

Conclusions

The peptides herein identified may contribute to an earlier detection of claudin-low breast carcinomas and possibly to develop more individualized therapies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805(1):105.PubMed Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805(1):105.PubMed
3.
go back to reference Weigel MT, Dowsett M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer. 2010;17(4):R245–62.CrossRefPubMed Weigel MT, Dowsett M. Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer. 2010;17(4):R245–62.CrossRefPubMed
4.
go back to reference Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedPubMedCentral Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedPubMedCentral
5.
go back to reference Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7:96.CrossRefPubMedPubMedCentral Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7:96.CrossRefPubMedPubMedCentral
6.
go back to reference Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.CrossRefPubMedPubMedCentral Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.CrossRefPubMedPubMedCentral
7.
go back to reference Mendes TFS, Kluskens LD, Rodrigues LR. Triple Negative Breast Cancer: Nanosolutions for a Big Challenge. Advanced Science. 2015;2(11):1–14.CrossRef Mendes TFS, Kluskens LD, Rodrigues LR. Triple Negative Breast Cancer: Nanosolutions for a Big Challenge. Advanced Science. 2015;2(11):1–14.CrossRef
10.
go back to reference Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin Cancer Res. 2007;13(15):4429–34.CrossRefPubMed Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin Cancer Res. 2007;13(15):4429–34.CrossRefPubMed
12.
go back to reference Fu B, Zhang Y, Long W, Zhang A, Zhang Y, An Y, Miao F, Nie F, Li M, He Y, Zhang J, Zhang G, Teng G. Identification and characterization of a novel phage display-derived peptide with affinity for human brain metastatic breast cancer. Biotechnol Lett. 2014;36:2291–301.CrossRefPubMed Fu B, Zhang Y, Long W, Zhang A, Zhang Y, An Y, Miao F, Nie F, Li M, He Y, Zhang J, Zhang G, Teng G. Identification and characterization of a novel phage display-derived peptide with affinity for human brain metastatic breast cancer. Biotechnol Lett. 2014;36:2291–301.CrossRefPubMed
13.
go back to reference Wölcke J, Weinhold E. A DNA-binding peptide from a phage display library. Nucleosides, Nucleotides and Nucleic Acids. 2001;20(4–7):1239–41.CrossRefPubMed Wölcke J, Weinhold E. A DNA-binding peptide from a phage display library. Nucleosides, Nucleotides and Nucleic Acids. 2001;20(4–7):1239–41.CrossRefPubMed
14.
go back to reference Shadidi M, Sioud M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. The FASEB Journal. 2003;17(2):256–8. Shadidi M, Sioud M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. The FASEB Journal. 2003;17(2):256–8.
15.
go back to reference Larsen SA, Meldgaard T, Fridriksdottir AJ, Lykkemark S, Poulsen PC, Overgaard LF, Petersen HB, Petersen OW, Kristensen P. Selection of a breast cancer subpopulation-specific antibody using phage display on tissue sections. Immunol Res. 2015;62(3):263–72.CrossRefPubMedPubMedCentral Larsen SA, Meldgaard T, Fridriksdottir AJ, Lykkemark S, Poulsen PC, Overgaard LF, Petersen HB, Petersen OW, Kristensen P. Selection of a breast cancer subpopulation-specific antibody using phage display on tissue sections. Immunol Res. 2015;62(3):263–72.CrossRefPubMedPubMedCentral
16.
go back to reference Abbineni G, Modali S, Safiejko-Mroczka B, Petrenko VA, Mao C. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol Pharm. 2010;7(5):1629–42.CrossRefPubMedPubMedCentral Abbineni G, Modali S, Safiejko-Mroczka B, Petrenko VA, Mao C. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol Pharm. 2010;7(5):1629–42.CrossRefPubMedPubMedCentral
17.
go back to reference Nilsson F, Tarli L, Viti F, Neri D. The use of phage display for the development of tumour targeting agents. Adv Drug Deliv Rev. 2000;43(2–3):165–96.CrossRefPubMed Nilsson F, Tarli L, Viti F, Neri D. The use of phage display for the development of tumour targeting agents. Adv Drug Deliv Rev. 2000;43(2–3):165–96.CrossRefPubMed
18.
go back to reference Molek P, Strukelj B, Bratkovic T. Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors. Molecules. 2011;16:857–87.CrossRefPubMed Molek P, Strukelj B, Bratkovic T. Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors. Molecules. 2011;16:857–87.CrossRefPubMed
19.
go back to reference NEB: Ph.D.TM Phage Display Libraries Manual. NEB: Ph.D.TM Phage Display Libraries Manual.
20.
go back to reference Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 Melanoma cells––a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat. 2006;104(1):13–9.CrossRefPubMed Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 Melanoma cells––a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat. 2006;104(1):13–9.CrossRefPubMed
21.
go back to reference Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W. Biopanning and rapid analysis of selective interactive ligands. Nat Med. 2001;7(11):1249–53.CrossRefPubMed Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W. Biopanning and rapid analysis of selective interactive ligands. Nat Med. 2001;7(11):1249–53.CrossRefPubMed
22.
go back to reference Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP: Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. In: Bacteriophages : Methods and Protocols. New York: Edited by Clokie MR, Kropinski AM, vol. 501: Humana Press; 2009;69–76. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP: Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. In: Bacteriophages : Methods and Protocols. New York: Edited by Clokie MR, Kropinski AM, vol. 501: Humana Press; 2009;69–76.
24.
go back to reference Bar H, Yacoby I, Benhar I. Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol. 2008;8(1):1–14.CrossRef Bar H, Yacoby I, Benhar I. Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol. 2008;8(1):1–14.CrossRef
25.
go back to reference Zhang B, Zhang Y, Wang J, Zhang Y, Chen J, Pan Y, Ren L, Hu Z, Zhao J, Liao M, et al. Screening and Identification of a Targeting Peptide to Hepatocarcinoma from a Phage Display Peptide Library. Mol Med. 2007;13(5–6):246–54.PubMedPubMedCentral Zhang B, Zhang Y, Wang J, Zhang Y, Chen J, Pan Y, Ren L, Hu Z, Zhao J, Liao M, et al. Screening and Identification of a Targeting Peptide to Hepatocarcinoma from a Phage Display Peptide Library. Mol Med. 2007;13(5–6):246–54.PubMedPubMedCentral
26.
go back to reference Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: String objects representing biological sequences, and matching algorithms. R package version 2.42.0. 2016. Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: String objects representing biological sequences, and matching algorithms. R package version 2.42.0. 2016.
27.
go back to reference Suarez-Diez M, Saccenti E. Effects of Sample Size and Dimensionality on the Performance of Four Algorithms for Inference of Association Networks in Metabonomics. J Proteome Res. 2015;14(12):5119–30.CrossRefPubMed Suarez-Diez M, Saccenti E. Effects of Sample Size and Dimensionality on the Performance of Four Algorithms for Inference of Association Networks in Metabonomics. J Proteome Res. 2015;14(12):5119–30.CrossRefPubMed
28.
go back to reference Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol. 2007;5(1):e8.CrossRefPubMedPubMedCentral Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol. 2007;5(1):e8.CrossRefPubMedPubMedCentral
29.
go back to reference Warnes G, Bolker B, Lumley T: gplots: Various R programming tools for plotting data. R package version 2.6.0. Warnes G, Bolker B, Lumley T: gplots: Various R programming tools for plotting data. R package version 2.6.0.
30.
go back to reference Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.CrossRefPubMedPubMedCentral Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.CrossRefPubMedPubMedCentral
31.
go back to reference Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protocols. 2009;4(3):363–71.CrossRefPubMed Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protocols. 2009;4(3):363–71.CrossRefPubMed
32.
go back to reference Kaur H, Garg A, Raghava G. PEPstr: A de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett. 2007;14:626–30.CrossRefPubMed Kaur H, Garg A, Raghava G. PEPstr: A de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett. 2007;14:626–30.CrossRefPubMed
33.
go back to reference Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, Raghava GPS. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct. 2015;10:73.CrossRefPubMedPubMedCentral Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, Raghava GPS. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct. 2015;10:73.CrossRefPubMedPubMedCentral
34.
go back to reference Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S. How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics. 2013;81(12):2159–66.CrossRef Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S. How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics. 2013;81(12):2159–66.CrossRef
35.
go back to reference Comeau S, Gatchell D, Vajda S, Camacho C: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 2004;20(1):45–50. Comeau S, Gatchell D, Vajda S, Camacho C: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 2004;20(1):45–50.
36.
go back to reference Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T. UCSF Chimera - a visualizaton system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.CrossRefPubMed Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T. UCSF Chimera - a visualizaton system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.CrossRefPubMed
37.
go back to reference Morse DL, Carroll D, Weberg L, Borgstrom MC, Ranger-Moore J, Gillies RJ. Determining suitable internal standards for mRNA quantification of increasing cancer progression in human breast cells by real-time reverse transcriptase polymerase chain reaction. Anal Biochem. 2005;342(1):69–77.CrossRefPubMed Morse DL, Carroll D, Weberg L, Borgstrom MC, Ranger-Moore J, Gillies RJ. Determining suitable internal standards for mRNA quantification of increasing cancer progression in human breast cells by real-time reverse transcriptase polymerase chain reaction. Anal Biochem. 2005;342(1):69–77.CrossRefPubMed
39.
go back to reference Work L, Nicklin S, White S, Baker A: Use of phage display to identify novel peptides for targeted gene therapy. In: Gene Therapy Methods. Cambridge: Edited by Phillips M, vol. 346: Academic Press. 2002;157–17. Work L, Nicklin S, White S, Baker A: Use of phage display to identify novel peptides for targeted gene therapy. In: Gene Therapy Methods. Cambridge: Edited by Phillips M, vol. 346: Academic Press. 2002;157–17.
40.
go back to reference Lamichhane A. Identification of Pseudomonas aeruginosa ribosome assembly inhibitors. In: Identification of drug targets and drug leads in Pseudomonas aeruginosa. Michigan: ProQuest Dissertations Publishing; 2008. Lamichhane A. Identification of Pseudomonas aeruginosa ribosome assembly inhibitors. In: Identification of drug targets and drug leads in Pseudomonas aeruginosa. Michigan: ProQuest Dissertations Publishing; 2008.
41.
go back to reference Tu X, Zhuang J, Wang W, Zhao L, Zhao L, Zhao J, Deng C, Qiu S, Zhang Y. Screening and identification of a renal carcinoma specific peptide from a phage display peptide library. J Exp Clin Cancer Res. 2011;30(1):1–6.CrossRef Tu X, Zhuang J, Wang W, Zhao L, Zhao L, Zhao J, Deng C, Qiu S, Zhang Y. Screening and identification of a renal carcinoma specific peptide from a phage display peptide library. J Exp Clin Cancer Res. 2011;30(1):1–6.CrossRef
42.
go back to reference Shukla GS, Krag DN. Phage display selection for cell-specific ligands: Development of a screening procedure suitable for small tumor specimens. J Drug Target. 2005;13(1):7–18.CrossRefPubMed Shukla GS, Krag DN. Phage display selection for cell-specific ligands: Development of a screening procedure suitable for small tumor specimens. J Drug Target. 2005;13(1):7–18.CrossRefPubMed
43.
go back to reference Zhou C, Kang J, Wang X, Wei W, Jiang W. Phage display screening identifies a novel peptide to suppress ovarian cancer cells in vitro and in vivo in mouse models. BMC Cancer. 2015;15(1):1–12.CrossRefPubMedPubMedCentral Zhou C, Kang J, Wang X, Wei W, Jiang W. Phage display screening identifies a novel peptide to suppress ovarian cancer cells in vitro and in vivo in mouse models. BMC Cancer. 2015;15(1):1–12.CrossRefPubMedPubMedCentral
44.
go back to reference Bigelow R, Williams B, Carroll J, Daves L, Cardelli J. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat. 2008;117(1):31–44.CrossRefPubMed Bigelow R, Williams B, Carroll J, Daves L, Cardelli J. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat. 2008;117(1):31–44.CrossRefPubMed
45.
go back to reference Lacroix M, Leclercq G: An updated view of cell lines as in vitro models for breast tumors. In: Focus on Breast Cancer Research. Edited by Yao A. New York: Nova Science Publishers; 2004. Lacroix M, Leclercq G: An updated view of cell lines as in vitro models for breast tumors. In: Focus on Breast Cancer Research. Edited by Yao A. New York: Nova Science Publishers; 2004.
46.
go back to reference Annecke K, Schmitt M, Euler U, Zerm M, Paepke D, Paepke S, von Minckwitz G, Thomssen C, Harbeck N. uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem. 2008;45:31–45.CrossRefPubMed Annecke K, Schmitt M, Euler U, Zerm M, Paepke D, Paepke S, von Minckwitz G, Thomssen C, Harbeck N. uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem. 2008;45:31–45.CrossRefPubMed
47.
go back to reference Damare J, Brandal S, Fortenberry YM. Inhibition of PAI-1 Antiproteolytic Activity Against tPA by RNA Aptamers. Nucleic Acid Therapeutics. 2014;24(4):239–49.CrossRefPubMedPubMedCentral Damare J, Brandal S, Fortenberry YM. Inhibition of PAI-1 Antiproteolytic Activity Against tPA by RNA Aptamers. Nucleic Acid Therapeutics. 2014;24(4):239–49.CrossRefPubMedPubMedCentral
48.
go back to reference Trelle MB, Dupont DM, Madsen JB, Andreasen PA, Jørgensen TJD. Dissecting the Effect of RNA Aptamer Binding on the Dynamics of Plasminogen Activator Inhibitor 1 Using Hydrogen/Deuterium Exchange Mass Spectrometry. ACS Chem Biol. 2014;9(1):174–82.CrossRefPubMed Trelle MB, Dupont DM, Madsen JB, Andreasen PA, Jørgensen TJD. Dissecting the Effect of RNA Aptamer Binding on the Dynamics of Plasminogen Activator Inhibitor 1 Using Hydrogen/Deuterium Exchange Mass Spectrometry. ACS Chem Biol. 2014;9(1):174–82.CrossRefPubMed
49.
go back to reference Lombaerts M, van Wezel T, Philippo K, Dierssen JWF, Zimmerman RME, Oosting J, van Eijk R, Eilers PH, van de Water B, Cornelisse CJ, et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer. 2006;94(5):661–71.PubMedPubMedCentral Lombaerts M, van Wezel T, Philippo K, Dierssen JWF, Zimmerman RME, Oosting J, van Eijk R, Eilers PH, van de Water B, Cornelisse CJ, et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer. 2006;94(5):661–71.PubMedPubMedCentral
Metadata
Title
Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies
Authors
Franklin L. Nobrega
Débora Ferreira
Ivone M. Martins
Maria Suarez-Diez
Joana Azeredo
Leon D. Kluskens
Lígia R. Rodrigues
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2937-2

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine