Skip to main content
Top
Published in: Archives of Osteoporosis 1/2021

01-12-2021 | Scoliosis | Original Article

Opportunistic use of dual-energy X-ray absorptiometry to evaluate lumbar scoliosis

Authors: Trevor L. Schell, Diane Krueger, Neil Binkley, Scott Hetzel, James T. Bernatz, Paul A. Anderson

Published in: Archives of Osteoporosis | Issue 1/2021

Login to get access

Abstract

Summary

Low bone mineral density is associated with spinal deformity. Dual-energy X-ray absorptiometry (DXA), a modality that assesses bone density, portends a theoretical means to also assess spinal deformity. We found that DXA can reliably assess spine alignment. DXA may permit surveillance of spine alignment, i.e., scoliosis in the clinical setting.

Purpose

Osteoporosis and scoliosis are interrelated disease processes. Dual-energy X-ray absorptiometry (DXA), used to assess bone density, can also be used to evaluate spinal deformity since it captures a posteroanterior (PA) image of the lumbar spine. We assessed the use of DXA to evaluate lumbar spine alignment.

Methods

A lumbar spine DXA phantom was used to assess the effects of axial and sagittal plane rotation on lumbar bone mineral content (BMC), density (BMD), and L1–L4 Cobb angle measurements. Using two subject cohorts, intra- and inter-observer reliability and validity of using DXA for L1–L4 Cobb angle measurements in the coronal and sagittal planes were assessed.

Results

Axial and sagittal plane rotation greater than 15° and 10°, respectively, significantly reduced measured BMD and BMC; there was minimal effect on Cobb angle measurement reliability. In human subjects, excellent intra- and inter-observer reliability was observed using lumbar PA DXA images for Cobb angle measurements. Agreement between Cobb angles derived from lumbar PA DXA images and AP lumbar radiographs ranged from good to excellent. The mean difference in Cobb angles between supine lumbar PA DXA images and upright AP lumbar radiographs was 2.8° in all subjects and 5.8° in those with scoliosis.

Conclusions

Lumbar spine rotation does not significantly affect BMD and BMC within 15° and 10° of axial and sagittal plane rotation, respectively, and minimally affects Cobb angle measurement. Spine alignment in the coronal plane can be reliably assessed using lumbar PA DXA images.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vanderpool DW, James JI, Wynne-Davies R (1969) Scoliosis in the elderly. J Bone Joint Surg Am 51:446–455CrossRef Vanderpool DW, James JI, Wynne-Davies R (1969) Scoliosis in the elderly. J Bone Joint Surg Am 51:446–455CrossRef
2.
go back to reference Healey JH, Lane JM (1985) Structural scoliosis in osteoporotic women. Clin Orthop Relat Res:216–223 Healey JH, Lane JM (1985) Structural scoliosis in osteoporotic women. Clin Orthop Relat Res:216–223
3.
go back to reference Thevenon A, Pollez B, Cantegrit F, Tison-Muchery F, Marchandise X, Duquesnoy B (1987) Relationship between kyphosis, scoliosis, and osteoporosis in the elderly population. Spine 12:744–745CrossRef Thevenon A, Pollez B, Cantegrit F, Tison-Muchery F, Marchandise X, Duquesnoy B (1987) Relationship between kyphosis, scoliosis, and osteoporosis in the elderly population. Spine 12:744–745CrossRef
4.
go back to reference Urrutia J, Diaz-Ledezma C, Espinosa J, Berven SH (2011) Lumbar scoliosis in postmenopausal women: prevalence and relationship with bone density, age, and body mass index. Spine 36:737–740CrossRef Urrutia J, Diaz-Ledezma C, Espinosa J, Berven SH (2011) Lumbar scoliosis in postmenopausal women: prevalence and relationship with bone density, age, and body mass index. Spine 36:737–740CrossRef
5.
go back to reference Bjerke BTZ, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, Bydon M, Nassr A (2017) Incidence of osteoporosis-related complications following posterior lumbar fusion. Glob Spine J 7:1–7CrossRef Bjerke BTZ, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, Bydon M, Nassr A (2017) Incidence of osteoporosis-related complications following posterior lumbar fusion. Glob Spine J 7:1–7CrossRef
6.
go back to reference Wagner SC, Formby PM, Helgeson MD, Kang DG (2016) Diagnosing the undiagnosed: osteoporosis in patients undergoing lumbar fusion. Spine 41:E1279–e1283CrossRef Wagner SC, Formby PM, Helgeson MD, Kang DG (2016) Diagnosing the undiagnosed: osteoporosis in patients undergoing lumbar fusion. Spine 41:E1279–e1283CrossRef
7.
go back to reference Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, Cho YE (2007) Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int 18:1219–1224CrossRef Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, Cho YE (2007) Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int 18:1219–1224CrossRef
8.
go back to reference Yagi M, King AB, Boachie-Adjei O (2011) Characterization of osteopenia/osteoporosis in adult scoliosis: does bone density affect surgical outcome? Spine 36:1652–1657CrossRef Yagi M, King AB, Boachie-Adjei O (2011) Characterization of osteopenia/osteoporosis in adult scoliosis: does bone density affect surgical outcome? Spine 36:1652–1657CrossRef
9.
go back to reference Grubb SA, Lipscomb HJ, Coonrad RW (1988) Degenerative adult onset scoliosis. Spine 13:241–245CrossRef Grubb SA, Lipscomb HJ, Coonrad RW (1988) Degenerative adult onset scoliosis. Spine 13:241–245CrossRef
10.
go back to reference Epstein JA, Epstein BS, Jones MD (1979) Symptomatic lumbar scoliosis with degenerative changes in the elderly. Spine 4:542–547CrossRef Epstein JA, Epstein BS, Jones MD (1979) Symptomatic lumbar scoliosis with degenerative changes in the elderly. Spine 4:542–547CrossRef
11.
go back to reference Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV (2003) Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. Jama 289:559–567CrossRef Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV (2003) Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. Jama 289:559–567CrossRef
12.
go back to reference Sansur CA, Smith JS, Coe JD, Glassman SD, Berven SH, Polly DW Jr, Perra JH, Boachie-Adjei O, Shaffrey CI (2011) Scoliosis research society morbidity and mortality of adult scoliosis surgery. Spine 36:E593–E597CrossRef Sansur CA, Smith JS, Coe JD, Glassman SD, Berven SH, Polly DW Jr, Perra JH, Boachie-Adjei O, Shaffrey CI (2011) Scoliosis research society morbidity and mortality of adult scoliosis surgery. Spine 36:E593–E597CrossRef
13.
go back to reference Liu G, Tan JH, Ee G, Chan YH, Low SL, Wong HK (2016) Morphology and prevalence study of lumbar scoliosis in 7,075 multiracial Asian adults. J Bone Joint Surg Am 98:1307–1312CrossRef Liu G, Tan JH, Ee G, Chan YH, Low SL, Wong HK (2016) Morphology and prevalence study of lumbar scoliosis in 7,075 multiracial Asian adults. J Bone Joint Surg Am 98:1307–1312CrossRef
14.
go back to reference Kebaish KM, Neubauer PR, Voros GD, Khoshnevisan MA, Skolasky RL (2011) Scoliosis in adults aged forty years and older: prevalence and relationship to age, race, and gender. Spine 36:731–736CrossRef Kebaish KM, Neubauer PR, Voros GD, Khoshnevisan MA, Skolasky RL (2011) Scoliosis in adults aged forty years and older: prevalence and relationship to age, race, and gender. Spine 36:731–736CrossRef
15.
go back to reference Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714CrossRef Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714CrossRef
16.
go back to reference Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19:127–140CrossRef Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19:127–140CrossRef
17.
go back to reference Pappou IP, Girardi FP, Sandhu HS, Parvataneni HK, Cammisa FP Jr, Schneider R, Frelinghuysen P, Lane JM (2006) Discordantly high spinal bone mineral density values in patients with adult lumbar scoliosis. Spine 31:1614–1620CrossRef Pappou IP, Girardi FP, Sandhu HS, Parvataneni HK, Cammisa FP Jr, Schneider R, Frelinghuysen P, Lane JM (2006) Discordantly high spinal bone mineral density values in patients with adult lumbar scoliosis. Spine 31:1614–1620CrossRef
18.
go back to reference Hoyer-Kuhn H, Knoop K, Semler O, Kuhr K, Hellmich M, Schoenau E, Koerber F (2016) Comparison of DXA scans and conventional X-rays for spine morphometry and bone age determination in children. J Clin Densitom 19:208–215CrossRef Hoyer-Kuhn H, Knoop K, Semler O, Kuhr K, Hellmich M, Schoenau E, Koerber F (2016) Comparison of DXA scans and conventional X-rays for spine morphometry and bone age determination in children. J Clin Densitom 19:208–215CrossRef
19.
go back to reference Makino T, Kaito T, Fujiwara H, Yonenobu K (2013) Lumbar scoliosis in rheumatoid arthritis: epidemiological research with a DXA cohort. Spine (Phila Pa 1976) 38:E339–E343CrossRef Makino T, Kaito T, Fujiwara H, Yonenobu K (2013) Lumbar scoliosis in rheumatoid arthritis: epidemiological research with a DXA cohort. Spine (Phila Pa 1976) 38:E339–E343CrossRef
20.
go back to reference Anderson PA, Polly DW, Binkley NC, Pickhardt PJ (2018) Clinical use of opportunistic computed tomography screening for osteoporosis. J Bone Joint Surg Am 100:2073–2081CrossRef Anderson PA, Polly DW, Binkley NC, Pickhardt PJ (2018) Clinical use of opportunistic computed tomography screening for osteoporosis. J Bone Joint Surg Am 100:2073–2081CrossRef
21.
go back to reference Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428CrossRef Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428CrossRef
22.
go back to reference Cicchetti DV (1993) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Pscyhlog Assess 6:284–290CrossRef Cicchetti DV (1993) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Pscyhlog Assess 6:284–290CrossRef
23.
go back to reference Izadyar S, Golbarg S, Takavar A, Zakariaee SS (2016) The effect of the lumbar vertebral malpositioning on bone mineral density measurements of the lumbar spine by dual-energy X-ray absorptiometry. J Clin Densitom 19:277–281CrossRef Izadyar S, Golbarg S, Takavar A, Zakariaee SS (2016) The effect of the lumbar vertebral malpositioning on bone mineral density measurements of the lumbar spine by dual-energy X-ray absorptiometry. J Clin Densitom 19:277–281CrossRef
24.
go back to reference Kim H, Kim HS, Moon ES, Yoon CS, Chung TS, Song HT, Suh JS, Lee YH, Kim S (2010) Scoliosis imaging: what radiologists should know. Radiographics 30:1823–1842CrossRef Kim H, Kim HS, Moon ES, Yoon CS, Chung TS, Song HT, Suh JS, Lee YH, Kim S (2010) Scoliosis imaging: what radiologists should know. Radiographics 30:1823–1842CrossRef
25.
go back to reference Mehta MH (1973) Radiographic estimation of vertebral rotation in scoliosis. J Bone Joint Surg (Br) 55:513–520CrossRef Mehta MH (1973) Radiographic estimation of vertebral rotation in scoliosis. J Bone Joint Surg (Br) 55:513–520CrossRef
26.
go back to reference Nash CL Jr, Moe JH (1969) A study of vertebral rotation. J Bone Joint Surg Am 51:223–229CrossRef Nash CL Jr, Moe JH (1969) A study of vertebral rotation. J Bone Joint Surg Am 51:223–229CrossRef
27.
go back to reference Boyer L, Shen J, Parent S, Kadoury S, Aubin CE (2018) Accuracy and precision of seven radiography-based measurement methods of vertebral axial rotation in adolescent idiopathic scoliosis. Spine Deform 6:351–357CrossRef Boyer L, Shen J, Parent S, Kadoury S, Aubin CE (2018) Accuracy and precision of seven radiography-based measurement methods of vertebral axial rotation in adolescent idiopathic scoliosis. Spine Deform 6:351–357CrossRef
28.
go back to reference Mukaiyama K, Takahashi J, Hirabayashi H, Ogihara N, Kuraishi S, Shimizu M, Kato H (2013) Factors influencing the residual rib hump after posterior spinal fusion for adolescent idiopathic scoliosis with Lenke 1 and 2 curves. J Orthop Sci 18:687–692CrossRef Mukaiyama K, Takahashi J, Hirabayashi H, Ogihara N, Kuraishi S, Shimizu M, Kato H (2013) Factors influencing the residual rib hump after posterior spinal fusion for adolescent idiopathic scoliosis with Lenke 1 and 2 curves. J Orthop Sci 18:687–692CrossRef
29.
go back to reference Rushton PR, Grevitt MP (2014) Do vertebral derotation techniques offer better outcomes compared to traditional methods in the surgical treatment of adolescent idiopathic scoliosis? Eur Spine J 23:1166–1176CrossRef Rushton PR, Grevitt MP (2014) Do vertebral derotation techniques offer better outcomes compared to traditional methods in the surgical treatment of adolescent idiopathic scoliosis? Eur Spine J 23:1166–1176CrossRef
30.
go back to reference Matteri RE, Pope MH, Frymoyer JW (1976) A biplane radiographic method of determining vertebral rotation in postmortem specimens. Clin Orthop Relat Res:95–98 Matteri RE, Pope MH, Frymoyer JW (1976) A biplane radiographic method of determining vertebral rotation in postmortem specimens. Clin Orthop Relat Res:95–98
31.
go back to reference Jeon YK, Shin MJ, Shin YB, Kim CR, Kim SJ, Ko HY, Kim IJ (2014) Effect of increased axial rotation angle on bone mineral density measurements of the lumbar spine. Spine J 14:2150–2154CrossRef Jeon YK, Shin MJ, Shin YB, Kim CR, Kim SJ, Ko HY, Kim IJ (2014) Effect of increased axial rotation angle on bone mineral density measurements of the lumbar spine. Spine J 14:2150–2154CrossRef
32.
go back to reference Girardi FP, Parvataneni HK, Sandhu HS, Cammisa FP Jr, Grewal H, Schneider R, Lane JM (2001) Correlation between vertebral body rotation and two-dimensional vertebral bone density measurement. Osteoporos Int 12:738–740CrossRef Girardi FP, Parvataneni HK, Sandhu HS, Cammisa FP Jr, Grewal H, Schneider R, Lane JM (2001) Correlation between vertebral body rotation and two-dimensional vertebral bone density measurement. Osteoporos Int 12:738–740CrossRef
33.
go back to reference Lee JS, Kim K, Jeon YK, Kim J, Jung DH, Kim SH, Shin MJ, Shin YB (2020) Effects of traction on interpretation of lumbar bone mineral density in patients with Duchenne muscular dystrophy: a new measurement method and diagnostic criteria based on comparison of dual-energy X-ray absorptiometry and quantitative computed tomography. J Clin Densitom 23:53–62CrossRef Lee JS, Kim K, Jeon YK, Kim J, Jung DH, Kim SH, Shin MJ, Shin YB (2020) Effects of traction on interpretation of lumbar bone mineral density in patients with Duchenne muscular dystrophy: a new measurement method and diagnostic criteria based on comparison of dual-energy X-ray absorptiometry and quantitative computed tomography. J Clin Densitom 23:53–62CrossRef
34.
go back to reference Yang C, Li Y, Zhao Y, Zhu X, Li M, Liu G (2016) Adult degenerative scoliosis: can Cobb angle on a supine posteroanterior radiograph be used to predict the Cobb angle in a standing position? Medicine 95:e2732CrossRef Yang C, Li Y, Zhao Y, Zhu X, Li M, Liu G (2016) Adult degenerative scoliosis: can Cobb angle on a supine posteroanterior radiograph be used to predict the Cobb angle in a standing position? Medicine 95:e2732CrossRef
35.
go back to reference Vavruch L, Tropp H (2016) A comparison of Cobb angle: standing versus supine images of late-onset idiopathic scoliosis. Pol J Radiol 81:270–276CrossRef Vavruch L, Tropp H (2016) A comparison of Cobb angle: standing versus supine images of late-onset idiopathic scoliosis. Pol J Radiol 81:270–276CrossRef
36.
go back to reference Wessberg P, Danielson BI, Willén J (2006) Comparison of Cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine 31:3039–3044CrossRef Wessberg P, Danielson BI, Willén J (2006) Comparison of Cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine 31:3039–3044CrossRef
37.
go back to reference Chung N, Cheng YH, Po HL, Ng WK, Cheung KC, Yung HY, Lai YM (2018) Spinal phantom comparability study of Cobb angle measurement of scoliosis using digital radiographic imaging. J Orthop Translat 15:81–90CrossRef Chung N, Cheng YH, Po HL, Ng WK, Cheung KC, Yung HY, Lai YM (2018) Spinal phantom comparability study of Cobb angle measurement of scoliosis using digital radiographic imaging. J Orthop Translat 15:81–90CrossRef
Metadata
Title
Opportunistic use of dual-energy X-ray absorptiometry to evaluate lumbar scoliosis
Authors
Trevor L. Schell
Diane Krueger
Neil Binkley
Scott Hetzel
James T. Bernatz
Paul A. Anderson
Publication date
01-12-2021
Publisher
Springer London
Published in
Archives of Osteoporosis / Issue 1/2021
Print ISSN: 1862-3522
Electronic ISSN: 1862-3514
DOI
https://doi.org/10.1007/s11657-021-00898-6

Other articles of this Issue 1/2021

Archives of Osteoporosis 1/2021 Go to the issue