Skip to main content
Top
Published in: European Spine Journal 5/2019

01-05-2019 | Scoliosis | Original Article

Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach

Authors: Fabio Galbusera, Frank Niemeyer, Hans-Joachim Wilke, Tito Bassani, Gloria Casaroli, Carla Anania, Francesco Costa, Marco Brayda-Bruno, Luca Maria Sconfienza

Published in: European Spine Journal | Issue 5/2019

Login to get access

Abstract

Purpose

We present an automated method for extracting anatomical parameters from biplanar radiographs of the spine, which is able to deal with a wide scenario of conditions, including sagittal and coronal deformities, degenerative phenomena as well as images acquired with different fields of view.

Methods

The location of 78 landmarks (end plate centers, hip joint centers, and margins of the S1 end plate) was extracted from three-dimensional reconstructions of 493 spines of patients suffering from various disorders, including adolescent idiopathic scoliosis, adult deformities, and spinal stenosis. A fully convolutional neural network featuring an additional differentiable spatial to numerical (DSNT) layer was trained to predict the location of each landmark. The values of some parameters (T4–T12 kyphosis, L1–L5 lordosis, Cobb angle of scoliosis, pelvic incidence, sacral slope, and pelvic tilt) were then calculated based on the landmarks’ locations. A quantitative comparison between the predicted parameters and the ground truth was performed on a set of 50 patients.

Results

The spine shape predicted by the models was perceptually convincing in all cases. All predicted parameters were strongly correlated with the ground truth. However, the standard errors of the estimated parameters ranged from 2.7° (for the pelvic tilt) to 11.5° (for the L1–L5 lordosis).

Conclusions

The proposed method is able to automatically determine the spine shape in biplanar radiographs and calculate anatomical and posture parameters in a wide scenario of clinical conditions with a very good visual performance, despite limitations highlighted by the statistical analysis of the results.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.
Appendix
Available only for authorised users
Literature
1.
go back to reference Duval-Beaupere G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462CrossRefPubMed Duval-Beaupere G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462CrossRefPubMed
2.
go back to reference Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703CrossRefPubMedPubMedCentral Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703CrossRefPubMedPubMedCentral
3.
go back to reference Le Huec JC, Roussouly P (2011) Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J 20(Suppl 5):556–557CrossRefPubMedPubMedCentral Le Huec JC, Roussouly P (2011) Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J 20(Suppl 5):556–557CrossRefPubMedPubMedCentral
4.
go back to reference Ferguson AB (1930) The study and treatment of scoliosis. South Med J 23:116–120CrossRef Ferguson AB (1930) The study and treatment of scoliosis. South Med J 23:116–120CrossRef
5.
go back to reference Cobb J (1948) Outline for the study of scoliosis. Instr Course Lect AAOS 5:261–275 Cobb J (1948) Outline for the study of scoliosis. Instr Course Lect AAOS 5:261–275
6.
go back to reference Carman DL, Browne RH, Birch JG (1990) Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am 72:328–333CrossRefPubMed Carman DL, Browne RH, Birch JG (1990) Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am 72:328–333CrossRefPubMed
7.
go back to reference Vrtovec T, Pernuš F, Likar B (2009) A review of methods for quantitative evaluation of spinal curvature. Eur Spine J 18:593–607CrossRefPubMed Vrtovec T, Pernuš F, Likar B (2009) A review of methods for quantitative evaluation of spinal curvature. Eur Spine J 18:593–607CrossRefPubMed
8.
go back to reference Wu H, Bailey C, Rasoulinejad P, Li S (2018) Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net. Med Image Anal 48:1–11CrossRefPubMed Wu H, Bailey C, Rasoulinejad P, Li S (2018) Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net. Med Image Anal 48:1–11CrossRefPubMed
9.
go back to reference Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S (2017) Direct estimation of spinal Cobb angles by structured multi-output regression. In: Niethammer M et al (ed) Information processing in medical imaging. IPMI 2017. Lecture notes in computer science, vol 10265. Springer, Cham, pp 529–540 Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S (2017) Direct estimation of spinal Cobb angles by structured multi-output regression. In: Niethammer M et al (ed) Information processing in medical imaging. IPMI 2017. Lecture notes in computer science, vol 10265. Springer, Cham, pp 529–540
10.
go back to reference Wu H, Bailey C, Rasoulinejad P, Li S (2017) Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: Medical image computing and computer assisted intervention—MICCAI 2017, Quebec City, pp 127–135 Wu H, Bailey C, Rasoulinejad P, Li S (2017) Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: Medical image computing and computer assisted intervention—MICCAI 2017, Quebec City, pp 127–135
11.
go back to reference Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y (2009) Automatic Cobb measurement of scoliosis based on fuzzy Hough transform with vertebral shape prior. J Digital Imaging 22:463CrossRef Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y (2009) Automatic Cobb measurement of scoliosis based on fuzzy Hough transform with vertebral shape prior. J Digital Imaging 22:463CrossRef
12.
go back to reference Nibali A, He Z, Morgan S, Prendergast L (2018) Numerical coordinate regression with convolutional neural networks. arXiv preprint arXiv:1801.07372 Nibali A, He Z, Morgan S, Prendergast L (2018) Numerical coordinate regression with convolutional neural networks. arXiv preprint arXiv:​1801.​07372
14.
16.
go back to reference Singer K, Jones T, Breidahl P (1990) A comparison of radiographic and computer-assisted measurements of thoracic and thoracolumbar sagittal curvature. Skelet Radiol 19:21–26CrossRef Singer K, Jones T, Breidahl P (1990) A comparison of radiographic and computer-assisted measurements of thoracic and thoracolumbar sagittal curvature. Skelet Radiol 19:21–26CrossRef
17.
go back to reference Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician 32:307–317CrossRef Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician 32:307–317CrossRef
19.
go back to reference Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference, vol 57, p 61 Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference, vol 57, p 61
20.
go back to reference Galbusera F, Bassani T, Costa F, Brayda-Bruno M, Zerbi A, Wilke HJ (2018) Artificial neural networks for the recognition of vertebral landmarks in the lumbar spine. Comput Methods Biomech Biomed Eng Imaging Vis 6(4):447–452CrossRef Galbusera F, Bassani T, Costa F, Brayda-Bruno M, Zerbi A, Wilke HJ (2018) Artificial neural networks for the recognition of vertebral landmarks in the lumbar spine. Comput Methods Biomech Biomed Eng Imaging Vis 6(4):447–452CrossRef
21.
go back to reference Anitha H, Prabhu G (2012) Automatic quantification of spinal curvature in scoliotic radiograph using image processing. J Med Syst 36:1943–1951CrossRef Anitha H, Prabhu G (2012) Automatic quantification of spinal curvature in scoliotic radiograph using image processing. J Med Syst 36:1943–1951CrossRef
22.
go back to reference Sardjono TA, Wilkinson MH, Veldhuizen AG, van Ooijen PM, Purnama KE, Verkerke GJ (2013) Automatic Cobb angle determination from radiographic images. Spine (Phila Pa 1976) 38:E1256–E1262CrossRef Sardjono TA, Wilkinson MH, Veldhuizen AG, van Ooijen PM, Purnama KE, Verkerke GJ (2013) Automatic Cobb angle determination from radiographic images. Spine (Phila Pa 1976) 38:E1256–E1262CrossRef
23.
go back to reference Zhang J, Lou E, Hill DL, Raso JV, Wang Y, Le LH, Shi X (2010) Computer-aided assessment of scoliosis on posteroanterior radiographs. Med Biol Eng Comput 48:185–195CrossRefPubMed Zhang J, Lou E, Hill DL, Raso JV, Wang Y, Le LH, Shi X (2010) Computer-aided assessment of scoliosis on posteroanterior radiographs. Med Biol Eng Comput 48:185–195CrossRefPubMed
24.
go back to reference Harrison DE, Harrison DD, Cailliet R, Janik TJ, Holland B (2001) Radiographic analysis of lumbar lordosis: centroid, Cobb, TRALL, and Harrison posterior tangent methods. Spine 26:e235–e242CrossRefPubMed Harrison DE, Harrison DD, Cailliet R, Janik TJ, Holland B (2001) Radiographic analysis of lumbar lordosis: centroid, Cobb, TRALL, and Harrison posterior tangent methods. Spine 26:e235–e242CrossRefPubMed
25.
go back to reference Briggs AM, Van Dieën JH, Wrigley TV, Greig AM, Phillips B, Lo SK, Bennell KL (2007) Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther 87:595–607CrossRefPubMed Briggs AM, Van Dieën JH, Wrigley TV, Greig AM, Phillips B, Lo SK, Bennell KL (2007) Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther 87:595–607CrossRefPubMed
26.
go back to reference Kyrölä KK, Salme J, Tuija J, Tero I, Eero K, Arja H (2018) Intra-and interrater reliability of sagittal spinopelvic parameters on full-spine radiographs in adults with symptomatic spinal disorders. Neurospine 15:175–181CrossRefPubMedPubMedCentral Kyrölä KK, Salme J, Tuija J, Tero I, Eero K, Arja H (2018) Intra-and interrater reliability of sagittal spinopelvic parameters on full-spine radiographs in adults with symptomatic spinal disorders. Neurospine 15:175–181CrossRefPubMedPubMedCentral
27.
go back to reference Somoskeöy S, Tunyogi-Csapó M, Bogyó C, Illés T (2012) Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J 12:1052–1059CrossRefPubMed Somoskeöy S, Tunyogi-Csapó M, Bogyó C, Illés T (2012) Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J 12:1052–1059CrossRefPubMed
28.
go back to reference Carreau JH, Bastrom T, Petcharaporn M, Schulte C, Marks M, Illés T, Somoskeöy S, Newton PO (2014) Computer-generated, three-dimensional spine model from biplanar radiographs: a validity study in idiopathic scoliosis curves greater than 50 degrees. Spine Deform 2:81–88CrossRefPubMed Carreau JH, Bastrom T, Petcharaporn M, Schulte C, Marks M, Illés T, Somoskeöy S, Newton PO (2014) Computer-generated, three-dimensional spine model from biplanar radiographs: a validity study in idiopathic scoliosis curves greater than 50 degrees. Spine Deform 2:81–88CrossRefPubMed
Metadata
Title
Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach
Authors
Fabio Galbusera
Frank Niemeyer
Hans-Joachim Wilke
Tito Bassani
Gloria Casaroli
Carla Anania
Francesco Costa
Marco Brayda-Bruno
Luca Maria Sconfienza
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Keyword
Scoliosis
Published in
European Spine Journal / Issue 5/2019
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-019-05944-z

Other articles of this Issue 5/2019

European Spine Journal 5/2019 Go to the issue