Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2019

Open Access 01-12-2019 | Scoliosis | Research article

The correlations between the anchor density and the curve correction of adolescent idiopathic scoliosis surgery

Authors: Yu-Cheng Yeh, Chi-Chien Niu, Lih-Huei Chen, Wen-Jer Chen, Po-Liang Lai

Published in: BMC Musculoskeletal Disorders | Issue 1/2019

Login to get access

Abstract

Background

The optimal anchor density in adolescent idiopathic scoliosis (AIS) surgery to achieve good curve correction remains unclear. The purpose of the study is to analyze the correlations between three-dimensional curve correction and anchor density in the pedicle screw-based posterior fusion of AIS.

Methods

One hundred and twenty-seven AIS patients receiving primary posterior fusion with pedicle screw instrumentation were retrospectively reviewed. Anchor density (AD) was defined as the screws number per fused spinal segment. The correlations between three-dimensional curve correction radiographic parameters and anchor density were analyzed with subgroup analysis based on different curve types, curve magnitudes, and curve flexibilities. The differences of curve correction parameters between the low-density (AD ≤1.4), middle-density (1.4 < AD ≤1.7) and high-density (AD > 1.7) groups were also calculated. Independent t-test, analysis of variance (ANOVA), and Pearson’s correlation coefficient were used for statistical analysis.

Results

There were no correlations between the anchor density and the coronal curve correction or apical vertebral rotation (AVR) correction. In the sagittal plane, mild positive correlations existed between anchor density and thoracic kyphosis correction in all patients (r = 0.27, p = 0.002). Subgroup analysis revealed similar mild positive correlations in Lenke 1 (r = 0.31, p = 0.02), Lenke 1–3 (r = 0.27, p = 0.01), small curves (40°-60°, r = 0.38, p <  0.001), and flexible curves (flexibility > 40%, r = 0.34, p = 0.01).
There were no differences between low-density (mean 1.31), middle-density (mean 1.55), and high-density (mean 1.83) in terms of coronal or axial curve correction parameters. Low-density group has longer fused level (mean difference 2.14, p = 0.001) and smaller thoracic kyphosis correction (mean difference 9.25°, p = 0.004) than high-density group.

Conclusion

In our study, the anchor density was not related to coronal or axial curve corrections. Mild positive correlations with anchor density were found in thoracic kyphosis correction, especially in patients with smaller and flexible curves. Low anchor density with longer fusion level achieves similar curve corrections with middle or high anchor density in adolescent idiopathic scoliosis surgery.
Literature
1.
go back to reference Kim YJ, Lenke LG, Kim J, Bridwell KH, Cho SK, Cheh G, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine. 2006;31(3):291–8.CrossRef Kim YJ, Lenke LG, Kim J, Bridwell KH, Cho SK, Cheh G, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine. 2006;31(3):291–8.CrossRef
2.
go back to reference Asghar J, Samdani AF, Pahys JM, D'Andrea LP, Guille JT, Clements DH, et al. Computed tomography evaluation of rotation correction in adolescent idiopathic scoliosis: a comparison of an all pedicle screw construct versus a hook-rod system. Spine. 2009;34(8):804–7.CrossRef Asghar J, Samdani AF, Pahys JM, D'Andrea LP, Guille JT, Clements DH, et al. Computed tomography evaluation of rotation correction in adolescent idiopathic scoliosis: a comparison of an all pedicle screw construct versus a hook-rod system. Spine. 2009;34(8):804–7.CrossRef
3.
go back to reference Yilmaz G, Borkhuu B, Dhawale AA, Oto M, Littleton AG, Mason DE, et al. Comparative analysis of hook, hybrid, and pedicle screw instrumentation in the posterior treatment of adolescent idiopathic scoliosis. J Pediatr Orthop. 2012;32(5):490–9.CrossRef Yilmaz G, Borkhuu B, Dhawale AA, Oto M, Littleton AG, Mason DE, et al. Comparative analysis of hook, hybrid, and pedicle screw instrumentation in the posterior treatment of adolescent idiopathic scoliosis. J Pediatr Orthop. 2012;32(5):490–9.CrossRef
4.
go back to reference Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine. 2010;35(11):E465–70.CrossRef Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine. 2010;35(11):E465–70.CrossRef
5.
go back to reference Ledonio CG, Polly DW Jr, Vitale MG, Wang Q, Richards BS. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am. 2011;93(13):1227–34.CrossRef Ledonio CG, Polly DW Jr, Vitale MG, Wang Q, Richards BS. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am. 2011;93(13):1227–34.CrossRef
6.
go back to reference Larson AN, Polly DW Jr, Ackerman SJ, Ledonio CG, Lonner BS, Shah SA, et al. What would be the annual cost savings if fewer screws were used in adolescent idiopathic scoliosis treatment in the US? Journal of neurosurgery Spine. 2015:1–8. Larson AN, Polly DW Jr, Ackerman SJ, Ledonio CG, Lonner BS, Shah SA, et al. What would be the annual cost savings if fewer screws were used in adolescent idiopathic scoliosis treatment in the US? Journal of neurosurgery Spine. 2015:1–8.
7.
go back to reference Clements DH, Betz RR, Newton PO, Rohmiller M, Marks MC, Bastrom T. Correlation of scoliosis curve correction with the number and type of fixation anchors. Spine. 2009;34(20):2147–50.CrossRef Clements DH, Betz RR, Newton PO, Rohmiller M, Marks MC, Bastrom T. Correlation of scoliosis curve correction with the number and type of fixation anchors. Spine. 2009;34(20):2147–50.CrossRef
8.
go back to reference Quan GM, Gibson MJ. Correction of main thoracic adolescent idiopathic scoliosis using pedicle screw instrumentation: does higher implant density improve correction? Spine. 2010;35(5):562–7.CrossRef Quan GM, Gibson MJ. Correction of main thoracic adolescent idiopathic scoliosis using pedicle screw instrumentation: does higher implant density improve correction? Spine. 2010;35(5):562–7.CrossRef
9.
go back to reference Yang S, Jones-Quaidoo SM, Eager M, Griffin JW, Reddi V, Novicoff W, et al. Right adolescent idiopathic thoracic curve (Lenke 1 a and B): does cost of instrumentation and implant density improve radiographic and cosmetic parameters? European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2011;20(7):1039–47.CrossRef Yang S, Jones-Quaidoo SM, Eager M, Griffin JW, Reddi V, Novicoff W, et al. Right adolescent idiopathic thoracic curve (Lenke 1 a and B): does cost of instrumentation and implant density improve radiographic and cosmetic parameters? European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2011;20(7):1039–47.CrossRef
10.
go back to reference Bharucha NJ, Lonner BS, Auerbach JD, Kean KE, Trobisch PD. Low-density versus high-density thoracic pedicle screw constructs in adolescent idiopathic scoliosis: do more screws lead to a better outcome? The spine journal : official journal of the North American Spine Society. 2013;13(4):375–81.CrossRef Bharucha NJ, Lonner BS, Auerbach JD, Kean KE, Trobisch PD. Low-density versus high-density thoracic pedicle screw constructs in adolescent idiopathic scoliosis: do more screws lead to a better outcome? The spine journal : official journal of the North American Spine Society. 2013;13(4):375–81.CrossRef
11.
go back to reference Chen J, Yang C, Ran B, Wang Y, Wang C, Zhu X, et al. Correction of Lenke 5 adolescent idiopathic scoliosis using pedicle screw instrumentation: does implant density influence the correction? Spine. 2013;38(15):E946–51.CrossRef Chen J, Yang C, Ran B, Wang Y, Wang C, Zhu X, et al. Correction of Lenke 5 adolescent idiopathic scoliosis using pedicle screw instrumentation: does implant density influence the correction? Spine. 2013;38(15):E946–51.CrossRef
12.
go back to reference Gebhart S, Alton TB, Bompadre V, Krengel WF. Do anchor density or pedicle screw density correlate with short-term outcome measures in adolescent idiopathic scoliosis surgery? Spine. 2014;39(2):E104–10.CrossRef Gebhart S, Alton TB, Bompadre V, Krengel WF. Do anchor density or pedicle screw density correlate with short-term outcome measures in adolescent idiopathic scoliosis surgery? Spine. 2014;39(2):E104–10.CrossRef
13.
go back to reference Larson AN, Polly DW Jr, Diamond B, Ledonio C, Richards BS 3rd, Emans JB, et al. Does higher anchor density result in increased curve correction and improved clinical outcomes in adolescent idiopathic scoliosis? Spine. 2014;39(7):571–8.CrossRef Larson AN, Polly DW Jr, Diamond B, Ledonio C, Richards BS 3rd, Emans JB, et al. Does higher anchor density result in increased curve correction and improved clinical outcomes in adolescent idiopathic scoliosis? Spine. 2014;39(7):571–8.CrossRef
14.
go back to reference Rushton PR, Elmalky M, Tikoo A, Basu S, Cole AA, Grevitt MP. The effect of metal density in thoracic adolescent idiopathic scoliosis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015. Rushton PR, Elmalky M, Tikoo A, Basu S, Cole AA, Grevitt MP. The effect of metal density in thoracic adolescent idiopathic scoliosis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015.
15.
go back to reference Ketenci IE, Yanik HS, Demiroz S, Ulusoy A, Erdem S. Three-dimensional correction in patients with Lenke 1 adolescent idiopathic scoliosis: comparison of consecutive versus interval pedicle screw instrumentation. Spine. 2016;41(2):134–8.CrossRef Ketenci IE, Yanik HS, Demiroz S, Ulusoy A, Erdem S. Three-dimensional correction in patients with Lenke 1 adolescent idiopathic scoliosis: comparison of consecutive versus interval pedicle screw instrumentation. Spine. 2016;41(2):134–8.CrossRef
16.
go back to reference Kemppainen JW, Morscher MA, Gothard MD, Adamczyk MJ, Ritzman TF. Evaluation of limited screw density pedicle screw constructs in posterior fusions for adolescent idiopathic scoliosis. Spine Deform. 2016;4(1):33–9.CrossRef Kemppainen JW, Morscher MA, Gothard MD, Adamczyk MJ, Ritzman TF. Evaluation of limited screw density pedicle screw constructs in posterior fusions for adolescent idiopathic scoliosis. Spine Deform. 2016;4(1):33–9.CrossRef
17.
go back to reference Mac-Thiong JM, Ibrahim S, Parent S, Labelle H. Defining the number and type of fixation anchors for optimal main curve correction in posterior surgery for adolescent idiopathic scoliosis. The spine journal : official journal of the North American Spine Society. 2016. Mac-Thiong JM, Ibrahim S, Parent S, Labelle H. Defining the number and type of fixation anchors for optimal main curve correction in posterior surgery for adolescent idiopathic scoliosis. The spine journal : official journal of the North American Spine Society. 2016.
18.
go back to reference de Kleuver M, Lewis SJ, Germscheid NM, Kamper SJ, Alanay A, Berven SH, et al. Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2014;23(12):2603–18.CrossRef de Kleuver M, Lewis SJ, Germscheid NM, Kamper SJ, Alanay A, Berven SH, et al. Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2014;23(12):2603–18.CrossRef
19.
go back to reference Lenke LG. The Lenke classification system of operative adolescent idiopathic scoliosis. Neurosurg Clin N Am. 2007;18(2):199–206.CrossRef Lenke LG. The Lenke classification system of operative adolescent idiopathic scoliosis. Neurosurg Clin N Am. 2007;18(2):199–206.CrossRef
20.
go back to reference Suk SI, Kim JH, Kim SS, Lim DJ. Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2012;21(1):13–22.CrossRef Suk SI, Kim JH, Kim SS, Lim DJ. Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2012;21(1):13–22.CrossRef
21.
go back to reference Vora V, Crawford A, Babekhir N, Boachie-Adjei O, Lenke L, Peskin M, et al. A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality. Spine. 2007;32(17):1869–74.CrossRef Vora V, Crawford A, Babekhir N, Boachie-Adjei O, Lenke L, Peskin M, et al. A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality. Spine. 2007;32(17):1869–74.CrossRef
22.
go back to reference Nash CL Jr, Moe JH. A study of vertebral rotation. J Bone Joint Surg Am. 1969;51(2):223–9.CrossRef Nash CL Jr, Moe JH. A study of vertebral rotation. J Bone Joint Surg Am. 1969;51(2):223–9.CrossRef
23.
go back to reference Mac-Thiong JM, Labelle H, Charlebois M, Huot MP, de Guise JA. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine. 2003;28(13):1404–9.PubMed Mac-Thiong JM, Labelle H, Charlebois M, Huot MP, de Guise JA. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine. 2003;28(13):1404–9.PubMed
24.
go back to reference Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J Bone Joint Surg Am. 2005;87(9):1937–46.CrossRef Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J Bone Joint Surg Am. 2005;87(9):1937–46.CrossRef
25.
go back to reference Yaszay B, Bastrom TP, Bartley CE, Parent S, Newton PO. The effects of the three-dimensional deformity of adolescent idiopathic scoliosis on pulmonary function. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2017;26(6):1658–64.CrossRef Yaszay B, Bastrom TP, Bartley CE, Parent S, Newton PO. The effects of the three-dimensional deformity of adolescent idiopathic scoliosis on pulmonary function. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2017;26(6):1658–64.CrossRef
26.
go back to reference Yang X, Liu L, Song Y, Zhou C, Zhou Z, Wang L, et al. Pre- and postoperative spinopelvic sagittal balance in adolescent patients with lenke type 5 idiopathic scoliosis. Spine. 2015;40(2):102–8.CrossRef Yang X, Liu L, Song Y, Zhou C, Zhou Z, Wang L, et al. Pre- and postoperative spinopelvic sagittal balance in adolescent patients with lenke type 5 idiopathic scoliosis. Spine. 2015;40(2):102–8.CrossRef
27.
go back to reference Sudo H, Abe Y, Kokabu T, Ito M, Abumi K, Ito Y, et al. Correlation analysis between change in thoracic kyphosis and multilevel facetectomy/ screw density in main thoracic adolescent idiopathic scoliosis surgery. The spine journal : official journal of the North American Spine Society. 2016. Sudo H, Abe Y, Kokabu T, Ito M, Abumi K, Ito Y, et al. Correlation analysis between change in thoracic kyphosis and multilevel facetectomy/ screw density in main thoracic adolescent idiopathic scoliosis surgery. The spine journal : official journal of the North American Spine Society. 2016.
28.
go back to reference Kokabu T, Sudo H, Abe Y, Ito M, Ito YM, Iwasaki N. Effects of multilevel Facetectomy and screw density on postoperative changes in spinal rod contour in thoracic adolescent idiopathic scoliosis surgery. PLoS One. 2016;11(8):e0161906.CrossRef Kokabu T, Sudo H, Abe Y, Ito M, Ito YM, Iwasaki N. Effects of multilevel Facetectomy and screw density on postoperative changes in spinal rod contour in thoracic adolescent idiopathic scoliosis surgery. PLoS One. 2016;11(8):e0161906.CrossRef
29.
go back to reference Luo M, Jiang H, Wang W, Li N, Shen M, Li P, et al. Influence of screw density on thoracic kyphosis restoration in hypokyphotic adolescent idiopathic scoliosis. BMC Musculoskelet Disord. 2017;18(1):526.CrossRef Luo M, Jiang H, Wang W, Li N, Shen M, Li P, et al. Influence of screw density on thoracic kyphosis restoration in hypokyphotic adolescent idiopathic scoliosis. BMC Musculoskelet Disord. 2017;18(1):526.CrossRef
30.
go back to reference Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine. 2001;26(5):E74–9.CrossRef Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine. 2001;26(5):E74–9.CrossRef
31.
go back to reference He C, Wong MS. Spinal flexibility assessment on the patients with adolescent idiopathic scoliosis: a literature review. Spine. 2018;43(4):E250–e8.CrossRef He C, Wong MS. Spinal flexibility assessment on the patients with adolescent idiopathic scoliosis: a literature review. Spine. 2018;43(4):E250–e8.CrossRef
32.
go back to reference Pan F, Firouzabadi A, Reitmaier S, Zander T, Schmidt H. The shape and mobility of the thoracic spine in asymptomatic adults - a systematic review of in vivo studies. J Biomech. 2018;78:21–35.CrossRef Pan F, Firouzabadi A, Reitmaier S, Zander T, Schmidt H. The shape and mobility of the thoracic spine in asymptomatic adults - a systematic review of in vivo studies. J Biomech. 2018;78:21–35.CrossRef
33.
go back to reference Hayden AM, Hayes AM, Brechbuhler JL, Israel H, Place HM. The effect of pelvic motion on spinopelvic parameters. The spine journal : official journal of the North American Spine Society. 2018;18(1):173–8.CrossRef Hayden AM, Hayes AM, Brechbuhler JL, Israel H, Place HM. The effect of pelvic motion on spinopelvic parameters. The spine journal : official journal of the North American Spine Society. 2018;18(1):173–8.CrossRef
Metadata
Title
The correlations between the anchor density and the curve correction of adolescent idiopathic scoliosis surgery
Authors
Yu-Cheng Yeh
Chi-Chien Niu
Lih-Huei Chen
Wen-Jer Chen
Po-Liang Lai
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2019
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2844-1

Other articles of this Issue 1/2019

BMC Musculoskeletal Disorders 1/2019 Go to the issue