Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2023

Open Access 01-12-2023 | Research

SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation

Authors: Huixin Xu, Guillaume P. Dugué, Yasmine Cantaut-Belarif, François-Xavier Lejeune, Suhasini Gupta, Claire Wyart, Maria K. Lehtinen

Published in: Fluids and Barriers of the CNS | Issue 1/2023

Login to get access

Abstract

Reissner’s fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Appendix
Available only for authorised users
Literature
1.
go back to reference Montecinos HA, Richter H, Caprile T, Rodriguez EM. Synthesis of transthyretin by the ependymal cells of the subcommissural organ. Cell Tissue Res. 2005;320(3):487–99.PubMedCrossRef Montecinos HA, Richter H, Caprile T, Rodriguez EM. Synthesis of transthyretin by the ependymal cells of the subcommissural organ. Cell Tissue Res. 2005;320(3):487–99.PubMedCrossRef
2.
go back to reference Sepulveda V, Maurelia F, Gonzalez M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS. 2021;18(1):1–24.CrossRef Sepulveda V, Maurelia F, Gonzalez M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS. 2021;18(1):1–24.CrossRef
3.
go back to reference Sterba G, Kiessig C, Naumann W, Petter H, Kleim I. The secretion of the subcommissural organ. A comparative immunocytochemical investigation. Cell Tissue Res. 1982;226(2):427–39.PubMedCrossRef Sterba G, Kiessig C, Naumann W, Petter H, Kleim I. The secretion of the subcommissural organ. A comparative immunocytochemical investigation. Cell Tissue Res. 1982;226(2):427–39.PubMedCrossRef
4.
go back to reference Gobron S, Creveaux I, Meiniel R, Didier R, Herbet A, Bamdad M, El Bitar F, Dastugue B, Meiniel A. Subcommissural organ/Reissner’s fiber complex: characterization of SCO-spondin, a glycoprotein with potent activity on neurite outgrowth. Glia. 2000;32(2):177–91.PubMedCrossRef Gobron S, Creveaux I, Meiniel R, Didier R, Herbet A, Bamdad M, El Bitar F, Dastugue B, Meiniel A. Subcommissural organ/Reissner’s fiber complex: characterization of SCO-spondin, a glycoprotein with potent activity on neurite outgrowth. Glia. 2000;32(2):177–91.PubMedCrossRef
5.
go back to reference Meiniel O, Meiniel A. The complex multidomain organization of SCO-spondin protein is highly conserved in mammals. Brain Res Rev. 2007;53(2):321–7.PubMedCrossRef Meiniel O, Meiniel A. The complex multidomain organization of SCO-spondin protein is highly conserved in mammals. Brain Res Rev. 2007;53(2):321–7.PubMedCrossRef
6.
go back to reference Gobron S, Monnerie H, Meiniel R, Creveaux I, Lehmann W, Lamalle D, Dastugue B, Meiniel A. SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation. J Cell Sci. 1996;109(Pt 5):1053–61.PubMedCrossRef Gobron S, Monnerie H, Meiniel R, Creveaux I, Lehmann W, Lamalle D, Dastugue B, Meiniel A. SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation. J Cell Sci. 1996;109(Pt 5):1053–61.PubMedCrossRef
7.
go back to reference Guerra MM, Gonzalez C, Caprile T, Jara M, Vio K, Munoz RI, Rodriguez S, Rodriguez EM. Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neurosci. 2015;9:480.PubMedPubMedCentralCrossRef Guerra MM, Gonzalez C, Caprile T, Jara M, Vio K, Munoz RI, Rodriguez S, Rodriguez EM. Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neurosci. 2015;9:480.PubMedPubMedCentralCrossRef
8.
go back to reference Sakka L, Deletage N, Lalloue F, Duval A, Chazal J, Lemaire JJ, Meiniel A, Monnerie H, Gobron S. SCO-spondin derived peptide NX210 induces neuroprotection in vitro and promotes fiber regrowth and functional recovery after spinal cord injury. PLoS ONE. 2014;9(3):e93179PubMedPubMedCentralCrossRef Sakka L, Deletage N, Lalloue F, Duval A, Chazal J, Lemaire JJ, Meiniel A, Monnerie H, Gobron S. SCO-spondin derived peptide NX210 induces neuroprotection in vitro and promotes fiber regrowth and functional recovery after spinal cord injury. PLoS ONE. 2014;9(3):e93179PubMedPubMedCentralCrossRef
9.
go back to reference Vera A, Recabal A, Saldivia N, Stanic K, Torrejon M, Montecinos H, Caprile T. Interaction between SCO-spondin and low density lipoproteins from embryonic cerebrospinal fluid modulates their roles in early neurogenesis. Front Neuroanat. 2015;9:72.PubMedPubMedCentralCrossRef Vera A, Recabal A, Saldivia N, Stanic K, Torrejon M, Montecinos H, Caprile T. Interaction between SCO-spondin and low density lipoproteins from embryonic cerebrospinal fluid modulates their roles in early neurogenesis. Front Neuroanat. 2015;9:72.PubMedPubMedCentralCrossRef
11.
go back to reference Cantaut-Belarif Y, Sternberg JR, Thouvenin O, Wyart C, Bardet PL. The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr Biol. 2018;28(15):2479-2486 e4.PubMedPubMedCentralCrossRef Cantaut-Belarif Y, Sternberg JR, Thouvenin O, Wyart C, Bardet PL. The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr Biol. 2018;28(15):2479-2486 e4.PubMedPubMedCentralCrossRef
13.
go back to reference Bearce EA, Grimes DT. On being the right shape: roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol. 2021;110:104–12.PubMedCrossRef Bearce EA, Grimes DT. On being the right shape: roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol. 2021;110:104–12.PubMedCrossRef
14.
go back to reference Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del’Immagine A, Bohm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci. 2023;24(9):540–56.PubMedCrossRef Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del’Immagine A, Bohm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci. 2023;24(9):540–56.PubMedCrossRef
15.
go back to reference Didier R, Dastugue B, Meiniel A. The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis. Int J Dev Biol. 1995;39(3):493–9.PubMed Didier R, Dastugue B, Meiniel A. The secretory material of the subcommissural organ of the chick embryo. Characterization of a specific polypeptide by two-dimensional electrophoresis. Int J Dev Biol. 1995;39(3):493–9.PubMed
16.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.PubMedCrossRef
17.
go back to reference Chua CO, Chahboune H, Braun A, Dummula K, Chua CE, Yu J, Ungvari Z, Sherbany AA, Hyder F, Ballabh P. Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke. 2009;40(10):3369–77.PubMedPubMedCentralCrossRef Chua CO, Chahboune H, Braun A, Dummula K, Chua CE, Yu J, Ungvari Z, Sherbany AA, Hyder F, Ballabh P. Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke. 2009;40(10):3369–77.PubMedPubMedCentralCrossRef
18.
go back to reference Sadegh C, Xu H, Sutin J, Fatou B, Gupta S, Pragana A, Taylor M, Kalugin PN, Zawadzki ME, Alturkistani O, Shipley FB, Dani N, Fame RM, Wurie Z, Talati P, Schleicher RL, Klein EM, Zhang Y, Holtzman MJ, Moore CI, Lin PY, Patel AB, Warf BC, Kimberly WT, Steen H, Andermann ML, Lehtinen MK. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. Neuron. 2023;111(10):1591-1608 e4.PubMedCrossRef Sadegh C, Xu H, Sutin J, Fatou B, Gupta S, Pragana A, Taylor M, Kalugin PN, Zawadzki ME, Alturkistani O, Shipley FB, Dani N, Fame RM, Wurie Z, Talati P, Schleicher RL, Klein EM, Zhang Y, Holtzman MJ, Moore CI, Lin PY, Patel AB, Warf BC, Kimberly WT, Steen H, Andermann ML, Lehtinen MK. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. Neuron. 2023;111(10):1591-1608 e4.PubMedCrossRef
19.
go back to reference Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S, Cui J, Shipley FB, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Warf BC, Lin PY, Lehtinen MK. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun. 2021;12(1):447.PubMedPubMedCentralCrossRef Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S, Cui J, Shipley FB, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Warf BC, Lin PY, Lehtinen MK. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun. 2021;12(1):447.PubMedPubMedCentralCrossRef
20.
go back to reference Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.CrossRef Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.CrossRef
21.
go back to reference Losecke W, Naumann W, Sterba G. Preparation and discharge of secretion in the subcommissural organ of the rat. An electron-microscopic immunocytochemical study. Cell Tissue Res. 1984;235(1):201–6.PubMedCrossRef Losecke W, Naumann W, Sterba G. Preparation and discharge of secretion in the subcommissural organ of the rat. An electron-microscopic immunocytochemical study. Cell Tissue Res. 1984;235(1):201–6.PubMedCrossRef
22.
go back to reference Rodriguez EM, Herrera H, Peruzzo B, Rodriguez S, Hein S, Oksche A. Light- and electron-microscopic immunocytochemistry and lectin histochemistry of the subcommissural organ: evidence for processing of the secretory material. Cell Tissue Res. 1986;243(3):545–59.PubMedCrossRef Rodriguez EM, Herrera H, Peruzzo B, Rodriguez S, Hein S, Oksche A. Light- and electron-microscopic immunocytochemistry and lectin histochemistry of the subcommissural organ: evidence for processing of the secretory material. Cell Tissue Res. 1986;243(3):545–59.PubMedCrossRef
23.
go back to reference Rose CD, Pompili D, Henke K, Van Gennip JLM, Meyer-Miner A, Rana R, Gobron S, Harris MP, Nitz M, Ciruna B. SCO-spondin defects and neuroinflammation are conserved mechanisms driving spinal deformity across genetic models of idiopathic scoliosis. Curr Biol. 2020;30(12):2363-2373 e6.PubMedCrossRef Rose CD, Pompili D, Henke K, Van Gennip JLM, Meyer-Miner A, Rana R, Gobron S, Harris MP, Nitz M, Ciruna B. SCO-spondin defects and neuroinflammation are conserved mechanisms driving spinal deformity across genetic models of idiopathic scoliosis. Curr Biol. 2020;30(12):2363-2373 e6.PubMedCrossRef
24.
go back to reference Blecher R, Krief S, Galili T, Biton IE, Stern T, Assaraf E, Levanon D, Appel E, Anekstein Y, Agar G, Groner Y, Zelzer E. The proprioceptive system masterminds spinal alignment: insight into the mechanism of scoliosis. Dev Cell. 2017;42(4):388-399 e3.PubMedCrossRef Blecher R, Krief S, Galili T, Biton IE, Stern T, Assaraf E, Levanon D, Appel E, Anekstein Y, Agar G, Groner Y, Zelzer E. The proprioceptive system masterminds spinal alignment: insight into the mechanism of scoliosis. Dev Cell. 2017;42(4):388-399 e3.PubMedCrossRef
25.
go back to reference Gao C, Chen BP, Sullivan MB, Hui J, Ouellet JA, Henderson JE, Saran N. Micro CT analysis of spine architecture in a mouse model of scoliosis. Front Endocrinol (Lausanne). 2015;6:38.PubMedCrossRef Gao C, Chen BP, Sullivan MB, Hui J, Ouellet JA, Henderson JE, Saran N. Micro CT analysis of spine architecture in a mouse model of scoliosis. Front Endocrinol (Lausanne). 2015;6:38.PubMedCrossRef
26.
go back to reference Vera A, Stanic K, Montecinos H, Torrejon M, Marcellini S, Caprile T. SCO-spondin from embryonic cerebrospinal fluid is required for neurogenesis during early brain development. Front Cell Neurosci. 2013;7:80.PubMedPubMedCentralCrossRef Vera A, Stanic K, Montecinos H, Torrejon M, Marcellini S, Caprile T. SCO-spondin from embryonic cerebrospinal fluid is required for neurogenesis during early brain development. Front Cell Neurosci. 2013;7:80.PubMedPubMedCentralCrossRef
27.
go back to reference Perez-Figares JM, Jiménez AJ, Perez-Martin M, Fernández-Llebrez P, Cifuentes M, Riera P, Rodríguez S, Rodríguez EM. Spontaneous congenital hydrocephalus in the mutant mouse hyh. Changes in the ventricular system and the subcommissural organ. (0022–3069 (Print)). Perez-Figares JM, Jiménez AJ, Perez-Martin M, Fernández-Llebrez P, Cifuentes M, Riera P, Rodríguez S, Rodríguez EM. Spontaneous congenital hydrocephalus in the mutant mouse hyh. Changes in the ventricular system and the subcommissural organ. (0022–3069 (Print)).
28.
go back to reference Takeuchi IK, Kimura R, Matsuda M, Shoji R. Absence of subcommissural organ in the cerebral aqueduct of congenital hydrocephalus spontaneously occurring in MT/HokIdr mice. Acta Neuropathol. 1987;73(4):320–2.PubMedCrossRef Takeuchi IK, Kimura R, Matsuda M, Shoji R. Absence of subcommissural organ in the cerebral aqueduct of congenital hydrocephalus spontaneously occurring in MT/HokIdr mice. Acta Neuropathol. 1987;73(4):320–2.PubMedCrossRef
29.
go back to reference Takeuchi IK, Kimura R, Shoji R. Dysplasia of subcommissural organ in congenital hydrocephalus spontaneously occurring in CWS/Idr rats. Experientia. 1988;44(4):338–40.PubMedCrossRef Takeuchi IK, Kimura R, Shoji R. Dysplasia of subcommissural organ in congenital hydrocephalus spontaneously occurring in CWS/Idr rats. Experientia. 1988;44(4):338–40.PubMedCrossRef
30.
go back to reference Louvi A, Wassef M. Ectopic engrailed 1 expression in the dorsal midline causes cell death, abnormal differentiation of circumventricular organs and errors in axonal pathfinding. Development. 2000;127(18):4061–71.PubMedCrossRef Louvi A, Wassef M. Ectopic engrailed 1 expression in the dorsal midline causes cell death, abnormal differentiation of circumventricular organs and errors in axonal pathfinding. Development. 2000;127(18):4061–71.PubMedCrossRef
31.
go back to reference Fernandez-Llebrez P, Grondona JM, Perez J, Lopez-Aranda MF, Estivill-Torrus G, Llebrez-Zayas PF, Soriano E, Ramos C, Lallemand Y, Bach A, Robert B. Msx1-deficient mice fail to form prosomere 1 derivatives, subcommissural organ, and posterior commissure and develop hydrocephalus. J Neuropathol Exp Neurol. 2004;63(6):574–86.PubMedCrossRef Fernandez-Llebrez P, Grondona JM, Perez J, Lopez-Aranda MF, Estivill-Torrus G, Llebrez-Zayas PF, Soriano E, Ramos C, Lallemand Y, Bach A, Robert B. Msx1-deficient mice fail to form prosomere 1 derivatives, subcommissural organ, and posterior commissure and develop hydrocephalus. J Neuropathol Exp Neurol. 2004;63(6):574–86.PubMedCrossRef
32.
go back to reference Ramos C, Fernandez-Llebrez P, Bach A, Robert B, Soriano E. Msx1 disruption leads to diencephalon defects and hydrocephalus. Dev Dyn. 2004;230(3):446–60.PubMedCrossRef Ramos C, Fernandez-Llebrez P, Bach A, Robert B, Soriano E. Msx1 disruption leads to diencephalon defects and hydrocephalus. Dev Dyn. 2004;230(3):446–60.PubMedCrossRef
33.
go back to reference Rodriguez S, Vio K, Wagner C, Barria M, Navarrete EH, Ramirez VD, Perez-Figares JM, Rodriguez EM. Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner’s fiber complex by maternal delivery of antibodies. Exp Brain Res. 1999;128(3):278–90.PubMedCrossRef Rodriguez S, Vio K, Wagner C, Barria M, Navarrete EH, Ramirez VD, Perez-Figares JM, Rodriguez EM. Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner’s fiber complex by maternal delivery of antibodies. Exp Brain Res. 1999;128(3):278–90.PubMedCrossRef
34.
go back to reference Vio K, Rodriguez S, Navarrete EH, Perez-Figares JM, Jimenez AJ, Rodriguez EM. Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res. 2000;135(1):41–52.PubMedCrossRef Vio K, Rodriguez S, Navarrete EH, Perez-Figares JM, Jimenez AJ, Rodriguez EM. Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res. 2000;135(1):41–52.PubMedCrossRef
35.
go back to reference Castaneyra-Perdomo A, Meyer G, Carmona-Calero E, Banuelos-Pineda J, Mendez-Medina R, Ormazabal-Ramos C, Ferres-Torres R. Alterations of the subcommissural organ in the hydrocephalic human fetal brain. Brain Res Dev Brain Res. 1994;79(2):316–20.PubMedCrossRef Castaneyra-Perdomo A, Meyer G, Carmona-Calero E, Banuelos-Pineda J, Mendez-Medina R, Ormazabal-Ramos C, Ferres-Torres R. Alterations of the subcommissural organ in the hydrocephalic human fetal brain. Brain Res Dev Brain Res. 1994;79(2):316–20.PubMedCrossRef
36.
go back to reference Ortega E, Munoz RI, Luza N, Guerra F, Guerra M, Vio K, Henzi R, Jaque J, Rodriguez S, McAllister JP, Rodriguez E. The value of early and comprehensive diagnoses in a human fetus with hydrocephalus and progressive obliteration of the aqueduct of Sylvius: case report. BMC Neurol. 2016;16:45.PubMedPubMedCentralCrossRef Ortega E, Munoz RI, Luza N, Guerra F, Guerra M, Vio K, Henzi R, Jaque J, Rodriguez S, McAllister JP, Rodriguez E. The value of early and comprehensive diagnoses in a human fetus with hydrocephalus and progressive obliteration of the aqueduct of Sylvius: case report. BMC Neurol. 2016;16:45.PubMedPubMedCentralCrossRef
37.
go back to reference Doliana R, Bot S, Bonaldo P, Colombatti A. EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization. FEBS Lett. 2000;484(2):164–8.PubMedCrossRef Doliana R, Bot S, Bonaldo P, Colombatti A. EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization. FEBS Lett. 2000;484(2):164–8.PubMedCrossRef
38.
go back to reference Meiniel O, Meiniel R, Lalloue F, Didier R, Jauberteau MO, Meiniel A, Petit D. The lengthening of a giant protein: when, how, and why? J Mol Evol. 2008;66(1):1–10.PubMedCrossRef Meiniel O, Meiniel R, Lalloue F, Didier R, Jauberteau MO, Meiniel A, Petit D. The lengthening of a giant protein: when, how, and why? J Mol Evol. 2008;66(1):1–10.PubMedCrossRef
39.
go back to reference Rakic P, Sidman RL. Subcommissural organ and adjacent ependyma: autoradiographic study of their origin in the mouse brain. Am J Anat. 1968;122(2):317–35.PubMedCrossRef Rakic P, Sidman RL. Subcommissural organ and adjacent ependyma: autoradiographic study of their origin in the mouse brain. Am J Anat. 1968;122(2):317–35.PubMedCrossRef
40.
go back to reference Aden U, Dahlberg V, Fredholm BB, Lai LJ, Chen Z, Bjelke B. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice. Stroke. 2002;33(5):1405–10.PubMedCrossRef Aden U, Dahlberg V, Fredholm BB, Lai LJ, Chen Z, Bjelke B. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice. Stroke. 2002;33(5):1405–10.PubMedCrossRef
42.
go back to reference Wadghiri YZ, Blind JA, Duan X, Moreno C, Yu X, Joyner AL, Turnbull DH. Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development. NMR Biomed. 2004;17(8):613–9.PubMedCrossRef Wadghiri YZ, Blind JA, Duan X, Moreno C, Yu X, Joyner AL, Turnbull DH. Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development. NMR Biomed. 2004;17(8):613–9.PubMedCrossRef
43.
go back to reference Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S. Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol. 2000;278(2):H652–7.PubMedCrossRef Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S. Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol. 2000;278(2):H652–7.PubMedCrossRef
44.
go back to reference Xue M, Balasubramaniam J, Buist RJ, Peeling J, Del Bigio MR. Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J Neuropathol Exp Neurol. 2003;62(11):1154–65.PubMedCrossRef Xue M, Balasubramaniam J, Buist RJ, Peeling J, Del Bigio MR. Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J Neuropathol Exp Neurol. 2003;62(11):1154–65.PubMedCrossRef
46.
go back to reference Fame RM, Cortes-Campos C, Sive HL. Brain ventricular system and cerebrospinal fluid development and function: light at the end of the tube: a primer with latest insights. BioEssays. 2020;42(3): e1900186.PubMedCrossRef Fame RM, Cortes-Campos C, Sive HL. Brain ventricular system and cerebrospinal fluid development and function: light at the end of the tube: a primer with latest insights. BioEssays. 2020;42(3): e1900186.PubMedCrossRef
47.
48.
go back to reference Lun MP, Johnson MB, Broadbelt KG, Watanabe M, Kang YJ, Chau KF, Springel MW, Malesz A, Sousa AM, Pletikos M, Adelita T, Calicchio ML, Zhang Y, Holtzman MJ, Lidov HG, Sestan N, Steen H, Monuki ES, Lehtinen MK. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci. 2015;35(12):4903–16.PubMedPubMedCentralCrossRef Lun MP, Johnson MB, Broadbelt KG, Watanabe M, Kang YJ, Chau KF, Springel MW, Malesz A, Sousa AM, Pletikos M, Adelita T, Calicchio ML, Zhang Y, Holtzman MJ, Lidov HG, Sestan N, Steen H, Monuki ES, Lehtinen MK. Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci. 2015;35(12):4903–16.PubMedPubMedCentralCrossRef
49.
go back to reference Gato A, Desmond ME. Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol. 2009;327(2):263–72.PubMedCrossRef Gato A, Desmond ME. Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol. 2009;327(2):263–72.PubMedCrossRef
50.
go back to reference Lu H, Shagirova A, Goggi JL, Yeo HL, Roy S. Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biol Open. 2020;9(5): bio052027.PubMedPubMedCentralCrossRef Lu H, Shagirova A, Goggi JL, Yeo HL, Roy S. Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biol Open. 2020;9(5): bio052027.PubMedPubMedCentralCrossRef
51.
go back to reference Troutwine BR, Gontarz P, Konjikusic MJ, Minowa R, Monstad-Rios A, Sepich DS, Kwon RY, Solnica-Krezel L, Gray RS. The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine. Curr Biol. 2020;30(12):2353-2362 e3.PubMedPubMedCentralCrossRef Troutwine BR, Gontarz P, Konjikusic MJ, Minowa R, Monstad-Rios A, Sepich DS, Kwon RY, Solnica-Krezel L, Gray RS. The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine. Curr Biol. 2020;30(12):2353-2362 e3.PubMedPubMedCentralCrossRef
52.
go back to reference Christine V, Isabelle A, Guillaume P, Yasmine CB, Alexis E, Morgane D, Diego López S, Hélène Le R, Arnim J, Hanane K, Joëlle V, Caroline P, Sylvie SM. Loss of the Reissner Fiber and increased URP neuropeptide signaling underlie scoliosis in a zebrafish ciliopathy mutant. bioRxiv; 2019. p. 2019.12.19.882258 Christine V, Isabelle A, Guillaume P, Yasmine CB, Alexis E, Morgane D, Diego López S, Hélène Le R, Arnim J, Hanane K, Joëlle V, Caroline P, Sylvie SM. Loss of the Reissner Fiber and increased URP neuropeptide signaling underlie scoliosis in a zebrafish ciliopathy mutant. bioRxiv; 2019. p. 2019.12.19.882258
53.
go back to reference Grimes DT, Boswell CW, Morante NF, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science. 2016;352(6291):1341–4.PubMedPubMedCentralCrossRef Grimes DT, Boswell CW, Morante NF, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science. 2016;352(6291):1341–4.PubMedPubMedCentralCrossRef
54.
go back to reference Xie H, Kang Y, Liu J, Huang M, Dai Z, Shi J, Wang S, Li L, Li Y, Zheng P, Sun Y, Han Q, Zhang J, Zhu Z, Xu L, Yelick PC, Cao M, Zhao C. Ependymal polarity defects coupled with disorganized ciliary beating drive abnormal cerebrospinal fluid flow and spine curvature in zebrafish. PLoS Biol. 2023;21(3): e3002008.PubMedPubMedCentralCrossRef Xie H, Kang Y, Liu J, Huang M, Dai Z, Shi J, Wang S, Li L, Li Y, Zheng P, Sun Y, Han Q, Zhang J, Zhu Z, Xu L, Yelick PC, Cao M, Zhao C. Ependymal polarity defects coupled with disorganized ciliary beating drive abnormal cerebrospinal fluid flow and spine curvature in zebrafish. PLoS Biol. 2023;21(3): e3002008.PubMedPubMedCentralCrossRef
55.
go back to reference Zhang X, Jia S, Chen Z, Chong YL, Xie H, Feng D, Wu X, Song DZ, Roy S, Zhao C. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat Genet. 2018;50(12):1666–73.PubMedCrossRef Zhang X, Jia S, Chen Z, Chong YL, Xie H, Feng D, Wu X, Song DZ, Roy S, Zhao C. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat Genet. 2018;50(12):1666–73.PubMedCrossRef
56.
go back to reference Bearce EA, Irons ZH, O’Hara-Smith JR, Kuhns CJ, Fisher SI, Crow WE, Grimes DT. Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. Elife. 2022;11: e83883.PubMedPubMedCentralCrossRef Bearce EA, Irons ZH, O’Hara-Smith JR, Kuhns CJ, Fisher SI, Crow WE, Grimes DT. Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. Elife. 2022;11: e83883.PubMedPubMedCentralCrossRef
57.
go back to reference Gaillard AL, Mohamad T, Quan FB, de Cian A, Mosimann C, Tostivint H, Pezeron G. Urp1 and Urp2 act redundantly to maintain spine shape in zebrafish larvae. Dev Biol. 2023;496:36–51.PubMedCrossRef Gaillard AL, Mohamad T, Quan FB, de Cian A, Mosimann C, Tostivint H, Pezeron G. Urp1 and Urp2 act redundantly to maintain spine shape in zebrafish larvae. Dev Biol. 2023;496:36–51.PubMedCrossRef
58.
go back to reference Blecher R, Heinemann-Yerushalmi L, Assaraf E, Konstantin N, Chapman JR, Cope TC, Bewick GS, Banks RW, Zelzer E. New functions for the proprioceptive system in skeletal biology. Philos Trans R Soc Lond B Biol Sci. 2018;373(1759):20170327.PubMedPubMedCentralCrossRef Blecher R, Heinemann-Yerushalmi L, Assaraf E, Konstantin N, Chapman JR, Cope TC, Bewick GS, Banks RW, Zelzer E. New functions for the proprioceptive system in skeletal biology. Philos Trans R Soc Lond B Biol Sci. 2018;373(1759):20170327.PubMedPubMedCentralCrossRef
59.
go back to reference Orts-Del’Immagine A, Cantaut-Belarif Y, Thouvenin O, Roussel J, Baskaran A, Langui D, Koeth F, Bivas P, Lejeune FX, Bardet PL, Wyart C. Sensory neurons contacting the cerebrospinal fluid require the reissner fiber to detect spinal curvature in vivo. Curr Biol. 2020;30(5):827-839 e4.PubMedCrossRef Orts-Del’Immagine A, Cantaut-Belarif Y, Thouvenin O, Roussel J, Baskaran A, Langui D, Koeth F, Bivas P, Lejeune FX, Bardet PL, Wyart C. Sensory neurons contacting the cerebrospinal fluid require the reissner fiber to detect spinal curvature in vivo. Curr Biol. 2020;30(5):827-839 e4.PubMedCrossRef
60.
go back to reference Gerstmann K, Jurcic N, Blasco E, Kunz S, de Almeida SF, Wanaverbecq N, Zampieri N. The role of intraspinal sensory neurons in the control of quadrupedal locomotion. Curr Biol. 2022;32(11):2442–53.PubMedCrossRef Gerstmann K, Jurcic N, Blasco E, Kunz S, de Almeida SF, Wanaverbecq N, Zampieri N. The role of intraspinal sensory neurons in the control of quadrupedal locomotion. Curr Biol. 2022;32(11):2442–53.PubMedCrossRef
61.
go back to reference Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miyashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. Elife. 2023;12: e83108.PubMedPubMedCentralCrossRef Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miyashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. Elife. 2023;12: e83108.PubMedPubMedCentralCrossRef
63.
go back to reference Zhang J, Li H, Lv L, Zhang Y. Computer-aided cobb measurement based on automatic detection of vertebral slopes using deep neural network. Int J Biomed Imaging. 2017;2017:9083916.PubMedPubMedCentralCrossRef Zhang J, Li H, Lv L, Zhang Y. Computer-aided cobb measurement based on automatic detection of vertebral slopes using deep neural network. Int J Biomed Imaging. 2017;2017:9083916.PubMedPubMedCentralCrossRef
64.
go back to reference Okashi OA, Du H, Al-Assam H. Automatic spine curvature estimation from X-ray images of a mouse model. Comput Methods Programs Biomed. 2017;140:175–84.PubMedCrossRef Okashi OA, Du H, Al-Assam H. Automatic spine curvature estimation from X-ray images of a mouse model. Comput Methods Programs Biomed. 2017;140:175–84.PubMedCrossRef
65.
go back to reference Dong Q, Luo G, Haynor D, O’Reilly M, Linnau K, Yaniv Z, Jarvik JG, Cross N. DicomAnnotator: a configurable open-source software program for efficient DICOM image annotation. J Digit Imaging. 2020;33(6):1514–26.PubMedPubMedCentralCrossRef Dong Q, Luo G, Haynor D, O’Reilly M, Linnau K, Yaniv Z, Jarvik JG, Cross N. DicomAnnotator: a configurable open-source software program for efficient DICOM image annotation. J Digit Imaging. 2020;33(6):1514–26.PubMedPubMedCentralCrossRef
67.
go back to reference Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31(6):681–7.PubMedCrossRef Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31(6):681–7.PubMedCrossRef
68.
go back to reference Suri A, Jones BC, Ng G, Anabaraonye N, Beyrer P, Domi A, Choi G, Tang S, Terry A, Leichner T, Fathali I, Bastin N, Chesnais H, Rajapakse CS. A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs. Bone. 2021;149: 115972.PubMedPubMedCentralCrossRef Suri A, Jones BC, Ng G, Anabaraonye N, Beyrer P, Domi A, Choi G, Tang S, Terry A, Leichner T, Fathali I, Bastin N, Chesnais H, Rajapakse CS. A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs. Bone. 2021;149: 115972.PubMedPubMedCentralCrossRef
69.
go back to reference Roza SJ, Govaert PP, Lequin MH, Jaddoe VW, Moll HA, Steegers EA, Hofman A, Verhulst FC, Tiemeier H. Cerebral ventricular volume and temperamental difficulties in infancy. The Generation R Study. J Psychiatry Neurosci. 2008;33(5):431–9.PubMedPubMedCentral Roza SJ, Govaert PP, Lequin MH, Jaddoe VW, Moll HA, Steegers EA, Hofman A, Verhulst FC, Tiemeier H. Cerebral ventricular volume and temperamental difficulties in infancy. The Generation R Study. J Psychiatry Neurosci. 2008;33(5):431–9.PubMedPubMedCentral
70.
go back to reference Panagopoulos D, Karydakis P, Themistocleous M. Slit ventricle syndrome: historical considerations, diagnosis, pathophysiology, and treatment review. Brain Circ. 2021;7(3):167–77.PubMedPubMedCentralCrossRef Panagopoulos D, Karydakis P, Themistocleous M. Slit ventricle syndrome: historical considerations, diagnosis, pathophysiology, and treatment review. Brain Circ. 2021;7(3):167–77.PubMedPubMedCentralCrossRef
72.
go back to reference Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell. 2016;19(5):643–52.PubMedCrossRef Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell. 2016;19(5):643–52.PubMedCrossRef
Metadata
Title
SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation
Authors
Huixin Xu
Guillaume P. Dugué
Yasmine Cantaut-Belarif
François-Xavier Lejeune
Suhasini Gupta
Claire Wyart
Maria K. Lehtinen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2023
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-023-00491-8

Other articles of this Issue 1/2023

Fluids and Barriers of the CNS 1/2023 Go to the issue