Skip to main content
Top
Published in: Strahlentherapie und Onkologie 2/2016

01-02-2016 | Original Article

Scanned ion beam therapy for prostate carcinoma

Comparison of single plan treatment and daily plan-adapted treatment

Authors: Dipl.-Ing.(FH) Sebastian Hild, Dr.-Ing. Christian Graeff, Dr.sc.hum. Antoni Rucinski, Prof. Dr.rer.nat. Klemens Zink, Dr. med. Gregor Habl, Prof. Marco Durante, Ph. D., Prof. Dr. med. Klaus Herfarth, Prof. Dr.rer.nat. Christoph Bert

Published in: Strahlentherapie und Onkologie | Issue 2/2016

Login to get access

Abstract

Background and purpose

Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy.

Materials and methods

Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7–2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions.

Results

All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95mean = 0.86, range 0.63–0.99) and IGRT (V95mean = 0.91, range 0.68–1.00), while ART maintained acceptable target coverage.

Conclusion

IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion.
Literature
1.
3.
go back to reference Zietman AL, DeSilvio ML, Slater JD et al (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294:1233–1239PubMedCrossRef Zietman AL, DeSilvio ML, Slater JD et al (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294:1233–1239PubMedCrossRef
4.
go back to reference Ghilezan M, Yan D, Liang J et al (2004) Online image-guided intensity-modulated radiotherapy for prostate cancer: how much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys 60:1602–1610PubMedCrossRef Ghilezan M, Yan D, Liang J et al (2004) Online image-guided intensity-modulated radiotherapy for prostate cancer: how much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys 60:1602–1610PubMedCrossRef
5.
go back to reference Someya M, Hori M, Tateoka K et al (2015) Results and DVH analysis of late rectal bleeding in patients treated with 3D-CRT or IMRT for localized prostate cancer. J Radiat Res 56:122–127PubMedPubMedCentralCrossRef Someya M, Hori M, Tateoka K et al (2015) Results and DVH analysis of late rectal bleeding in patients treated with 3D-CRT or IMRT for localized prostate cancer. J Radiat Res 56:122–127PubMedPubMedCentralCrossRef
6.
go back to reference Habl G, Hatiboglu G, Edler L et al (2014) Ion Prostate Irradiation (IPI)—a pilot study to establish the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique. BMC Cancer 14:202PubMedPubMedCentralCrossRef Habl G, Hatiboglu G, Edler L et al (2014) Ion Prostate Irradiation (IPI)—a pilot study to establish the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique. BMC Cancer 14:202PubMedPubMedCentralCrossRef
7.
go back to reference Shioyama Y, Tsuji H, Suefuji H et al (2015) Particle radiotherapy for prostate cancer. Int J Urol 22:33–39PubMedCrossRef Shioyama Y, Tsuji H, Suefuji H et al (2015) Particle radiotherapy for prostate cancer. Int J Urol 22:33–39PubMedCrossRef
8.
go back to reference Nikoghosyan AV, Schulz-Ertner D, Herfarth K et al (2011) Acute toxicity of combined photon IMRT and carbon ion boost for intermediate-risk prostate cancer—acute toxicity of 12C for PC. Acta Oncol 50:784–790PubMedCrossRef Nikoghosyan AV, Schulz-Ertner D, Herfarth K et al (2011) Acute toxicity of combined photon IMRT and carbon ion boost for intermediate-risk prostate cancer—acute toxicity of 12C for PC. Acta Oncol 50:784–790PubMedCrossRef
9.
go back to reference Rucinski A, Brons S, Richter D et al (2015) Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel. Radiat Oncol 10:348CrossRef Rucinski A, Brons S, Richter D et al (2015) Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel. Radiat Oncol 10:348CrossRef
10.
go back to reference Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383CrossRef Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383CrossRef
11.
go back to reference Fowler JF, Ritter MA, Chappell RJ et al (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56:1093–1104PubMedCrossRef Fowler JF, Ritter MA, Chappell RJ et al (2003) What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys 56:1093–1104PubMedCrossRef
12.
go back to reference Ghilezan M, Jaffray D, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol 62:406–417CrossRef Ghilezan M, Jaffray D, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol 62:406–417CrossRef
13.
go back to reference Langen KM, Willoughby TR, Meeks SL et al (2008) Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 71:1084–1090PubMedCrossRef Langen KM, Willoughby TR, Meeks SL et al (2008) Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 71:1084–1090PubMedCrossRef
14.
go back to reference Peng C, Ahunbay E, Chen G et al (2011) Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 79:909–914PubMedCrossRef Peng C, Ahunbay E, Chen G et al (2011) Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 79:909–914PubMedCrossRef
15.
go back to reference Yan D, Lockman D, Brabbins D et al (2000) An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. Int J Radiat Oncol Biol Phys 48:289–302PubMedCrossRef Yan D, Lockman D, Brabbins D et al (2000) An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. Int J Radiat Oncol Biol Phys 48:289–302PubMedCrossRef
16.
go back to reference Graeff C, Durante M, Bert C (2012) Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys 39:6004–6013PubMedCrossRef Graeff C, Durante M, Bert C (2012) Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys 39:6004–6013PubMedCrossRef
17.
go back to reference Ahunbay EE, Peng C, Holmes S et al (2010) Online adaptive replanning method for prostate radiotherapy. Int J Radiat Oncol Biol Phys 77:1561–1572PubMedCrossRef Ahunbay EE, Peng C, Holmes S et al (2010) Online adaptive replanning method for prostate radiotherapy. Int J Radiat Oncol Biol Phys 77:1561–1572PubMedCrossRef
18.
go back to reference Shimizu S, Osaka Y, Shinohara N et al (2011) Use of implanted markers and interportal adjustment with real-time tracking radiotherapy system to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys 81:e393–e399PubMedCrossRef Shimizu S, Osaka Y, Shinohara N et al (2011) Use of implanted markers and interportal adjustment with real-time tracking radiotherapy system to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys 81:e393–e399PubMedCrossRef
19.
go back to reference Tang S, Both S, Bentefour H et al (2012) Improvement of prostate treatment by anterior proton fields. Int J Radiat Oncol Biol Phys 83:408–418PubMedCrossRef Tang S, Both S, Bentefour H et al (2012) Improvement of prostate treatment by anterior proton fields. Int J Radiat Oncol Biol Phys 83:408–418PubMedCrossRef
20.
go back to reference Hild S, Graeff C, Trautmann J et al (2014) Fast optimization and dose calculation in scanned ion beam therapy. Med Phys 41:071703PubMedCrossRef Hild S, Graeff C, Trautmann J et al (2014) Fast optimization and dose calculation in scanned ion beam therapy. Med Phys 41:071703PubMedCrossRef
21.
go back to reference Thieke C, Malsch U, Schlegel W et al (2006) Kilovoltage CT using a linac-CT scanner combination. Br J Radiol 79:S79–S86PubMedCrossRef Thieke C, Malsch U, Schlegel W et al (2006) Kilovoltage CT using a linac-CT scanner combination. Br J Radiol 79:S79–S86PubMedCrossRef
22.
go back to reference O’Daniel JC, Dong L, Zhang L et al (2006) Dosimetric comparison of four target alignment methods for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 66:883–891PubMedCrossRef O’Daniel JC, Dong L, Zhang L et al (2006) Dosimetric comparison of four target alignment methods for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 66:883–891PubMedCrossRef
23.
go back to reference Herk Mv, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135PubMedCrossRef Herk Mv, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135PubMedCrossRef
24.
go back to reference Wong JR, Gao Z, Uematsu M et al (2008) Interfractional prostate shifts: review of 1870 computed tomography (CT) scans obtained during image-guided radiotherapy using CT-on-rails for the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 72:1396–1401PubMedCrossRef Wong JR, Gao Z, Uematsu M et al (2008) Interfractional prostate shifts: review of 1870 computed tomography (CT) scans obtained during image-guided radiotherapy using CT-on-rails for the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 72:1396–1401PubMedCrossRef
25.
go back to reference Krämer M, Scholz M (2000) Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol 45:3319–3330PubMedCrossRef Krämer M, Scholz M (2000) Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol 45:3319–3330PubMedCrossRef
26.
go back to reference Richter D, Schwarzkopf A, Trautmann J et al (2013) Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Med Phys 40:051722PubMedCrossRef Richter D, Schwarzkopf A, Trautmann J et al (2013) Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Med Phys 40:051722PubMedCrossRef
27.
go back to reference Scholz M, Kellerer AM, Kraft-Weyrather W et al (1997) Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys 36:59–66PubMedCrossRef Scholz M, Kellerer AM, Kraft-Weyrather W et al (1997) Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys 36:59–66PubMedCrossRef
28.
go back to reference Horcicka M, Meyer C, Buschbacher A et al (2013) Algorithms for the optimization of RBE-weighted dose in particle therapy. Phys Med Biol 58:275–286PubMedCrossRef Horcicka M, Meyer C, Buschbacher A et al (2013) Algorithms for the optimization of RBE-weighted dose in particle therapy. Phys Med Biol 58:275–286PubMedCrossRef
29.
go back to reference Lawton CA, Michalski J, El-Naqa I et al (2009) RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 74:383–387PubMedPubMedCentralCrossRef Lawton CA, Michalski J, El-Naqa I et al (2009) RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 74:383–387PubMedPubMedCentralCrossRef
30.
go back to reference Gora J, Stock M, Lutgendorf-Caucig C et al (2013) Is there an advantage in designing adapted, patient-specific PTV margins in intensity modulated proton beam therapy for prostate cancer? Int J Radiat Oncol Biol Phys 85:881–888PubMedCrossRef Gora J, Stock M, Lutgendorf-Caucig C et al (2013) Is there an advantage in designing adapted, patient-specific PTV margins in intensity modulated proton beam therapy for prostate cancer? Int J Radiat Oncol Biol Phys 85:881–888PubMedCrossRef
31.
go back to reference Susil RC, McNutt TR, DeWeese TL et al (2010) Effects of prostate-rectum separation on rectal dose from external beam radiotherapy. Int J Radiat Oncol Biol Phys 76:1251–1258PubMedPubMedCentralCrossRef Susil RC, McNutt TR, DeWeese TL et al (2010) Effects of prostate-rectum separation on rectal dose from external beam radiotherapy. Int J Radiat Oncol Biol Phys 76:1251–1258PubMedPubMedCentralCrossRef
32.
go back to reference Choi Y, Kwak DW, Lee HS et al (2015) Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy. J Med Imaging Radiat Oncol 59:236–242PubMedCrossRef Choi Y, Kwak DW, Lee HS et al (2015) Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy. J Med Imaging Radiat Oncol 59:236–242PubMedCrossRef
33.
go back to reference Wang KK, Vapiwala N, Bui V et al (2014) The impact of stool and gas volume on intrafraction prostate motion in patients undergoing radiotherapy with daily endorectal balloon. Radiother Oncol 112:89–94PubMedCrossRef Wang KK, Vapiwala N, Bui V et al (2014) The impact of stool and gas volume on intrafraction prostate motion in patients undergoing radiotherapy with daily endorectal balloon. Radiother Oncol 112:89–94PubMedCrossRef
34.
go back to reference Chen W, Gemmel A, Rietzel E (2013) A patient-specific planning target volume used in ‘plan of the day’ adaptation for interfractional motion mitigation. J Radiat Res 54:i82–i90PubMedPubMedCentralCrossRef Chen W, Gemmel A, Rietzel E (2013) A patient-specific planning target volume used in ‘plan of the day’ adaptation for interfractional motion mitigation. J Radiat Res 54:i82–i90PubMedPubMedCentralCrossRef
35.
go back to reference Lettmaier S, Lotter M, Kreppner S et al (2012) Long term results of a prospective dose escalation phase-II trial: interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer. Radiother Oncol 104:181–186PubMedCrossRef Lettmaier S, Lotter M, Kreppner S et al (2012) Long term results of a prospective dose escalation phase-II trial: interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer. Radiother Oncol 104:181–186PubMedCrossRef
36.
go back to reference Lahmer G, Lotter M, Kreppner S et al (2013) Protocol-based image-guided salvage brachytherapy. Early results in patients with local failure of prostate cancer after radiation therapy. Strahlenther Onkol 189:668–674PubMedCrossRef Lahmer G, Lotter M, Kreppner S et al (2013) Protocol-based image-guided salvage brachytherapy. Early results in patients with local failure of prostate cancer after radiation therapy. Strahlenther Onkol 189:668–674PubMedCrossRef
37.
go back to reference Badakhshi H, Graf R, Budach V et al (2015) Permanent interstitial low-dose-rate brachytherapy for patients with low risk prostate cancer: an interim analysis of 312 cases. Strahlenther Onkol 191:303–309PubMedCrossRef Badakhshi H, Graf R, Budach V et al (2015) Permanent interstitial low-dose-rate brachytherapy for patients with low risk prostate cancer: an interim analysis of 312 cases. Strahlenther Onkol 191:303–309PubMedCrossRef
38.
go back to reference Georg D, Hopfgartner J, Gora J et al (2014) Dosimetric considerations to determine the optimal technique for localized prostate cancer among external photon, proton, or carbon-ion therapy and high-dose-rate or low-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 88:715–722PubMedCrossRef Georg D, Hopfgartner J, Gora J et al (2014) Dosimetric considerations to determine the optimal technique for localized prostate cancer among external photon, proton, or carbon-ion therapy and high-dose-rate or low-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 88:715–722PubMedCrossRef
39.
go back to reference Grun R, Friedrich T, Kramer M et al (2015) Assessment of potential advantages of relevant ions for particle therapy: a model based study. Med Phys 42:1037–1047PubMedCrossRef Grun R, Friedrich T, Kramer M et al (2015) Assessment of potential advantages of relevant ions for particle therapy: a model based study. Med Phys 42:1037–1047PubMedCrossRef
Metadata
Title
Scanned ion beam therapy for prostate carcinoma
Comparison of single plan treatment and daily plan-adapted treatment
Authors
Dipl.-Ing.(FH) Sebastian Hild
Dr.-Ing. Christian Graeff
Dr.sc.hum. Antoni Rucinski
Prof. Dr.rer.nat. Klemens Zink
Dr. med. Gregor Habl
Prof. Marco Durante, Ph. D.
Prof. Dr. med. Klaus Herfarth
Prof. Dr.rer.nat. Christoph Bert
Publication date
01-02-2016
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 2/2016
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-015-0925-0

Other articles of this Issue 2/2016

Strahlentherapie und Onkologie 2/2016 Go to the issue