Skip to main content
Top
Published in: BMC Medicine 1/2020

01-12-2020 | SARS-CoV-2 | Research article

The effect of travel restrictions on the geographical spread of COVID-19 between large cities in China: a modelling study

Authors: Billy J. Quilty, Charlie Diamond, Yang Liu, Hamish Gibbs, Timothy W. Russell, Christopher I. Jarvis, Kiesha Prem, Carl A. B. Pearson, Samuel Clifford, Stefan Flasche, Petra Klepac, Rosalind M. Eggo, Mark Jit, CMMID COVID-19 working group

Published in: BMC Medicine | Issue 1/2020

Login to get access

Abstract

Background

To contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar New Year, on 23 January 2020. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of local transmission of COVID-19 in other major cities in mainland China.

Methods

We estimated the number of infected travellers from Wuhan to other major cities in mainland China from November 2019 to February 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes. We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios to simulate the effect of local non-pharmaceutical interventions.

Results

We find that in the four cities, given the potentially high prevalence of COVID-19 in Wuhan between December 2019 and early January 2020, local transmission may have been seeded as early as 1–8 January 2020. By the time the cordon sanitaire was imposed, infections were likely in the thousands. The cordon sanitaire alone did not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller cities. Reduced transmissibility resulted in a notable decrease in the incidence of infection in the four studied cities.

Conclusions

Our results indicate that sustained transmission was likely occurring several weeks prior to the implementation of the cordon sanitaire in four major cities of mainland China and that the observed decrease in incidence was likely attributable to other non-pharmaceutical, transmission-reducing interventions.
Appendix
Available only for authorised users
Literature
14.
go back to reference 春运前十天, 武汉铁公空发送400余万人次, 公共交通运送8000余万人次_首页武汉_新闻中心_长江网 (Translated: Ten days before the Spring Festival, Wuhan Railway Express sent more than 4 million passengers, and public transportation delivered more than 80 million passengers.). http://news.cjn.cn/sywh/202001/t3539167.htm. Accessed 23 Mar 2020. 春运前十天, 武汉铁公空发送400余万人次, 公共交通运送8000余万人次_首页武汉_新闻中心_长江网 (Translated: Ten days before the Spring Festival, Wuhan Railway Express sent more than 4 million passengers, and public transportation delivered more than 80 million passengers.). http://​news.​cjn.​cn/​sywh/​202001/​t3539167.​htm. Accessed 23 Mar 2020.
16.
go back to reference Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance. 2020;25:2000058.CrossRef Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance. 2020;25:2000058.CrossRef
17.
go back to reference Endo A, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020;5:67. Endo A, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020;5:67.
18.
go back to reference Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020;93:284–6.CrossRef Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020;93:284–6.CrossRef
19.
go back to reference Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382:1199–207. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382:1199–207.
20.
go back to reference Hartfield M, Alizon S. Introducing the outbreak threshold in epidemiology. PLoS Pathog. 2013;9:e1003277.CrossRef Hartfield M, Alizon S. Introducing the outbreak threshold in epidemiology. PLoS Pathog. 2013;9:e1003277.CrossRef
21.
go back to reference Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438:355–9.CrossRef Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438:355–9.CrossRef
26.
go back to reference Lu J, du Plessis L, Liu Z, Hill V, Kang M, Lin H, et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell. 2020;181:997–1003.e9. Lu J, du Plessis L, Liu Z, Hill V, Kang M, Lin H, et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell. 2020;181:997–1003.e9.
28.
go back to reference Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–9.CrossRef Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–9.CrossRef
35.
go back to reference Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514–523. Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514–523.
Metadata
Title
The effect of travel restrictions on the geographical spread of COVID-19 between large cities in China: a modelling study
Authors
Billy J. Quilty
Charlie Diamond
Yang Liu
Hamish Gibbs
Timothy W. Russell
Christopher I. Jarvis
Kiesha Prem
Carl A. B. Pearson
Samuel Clifford
Stefan Flasche
Petra Klepac
Rosalind M. Eggo
Mark Jit
CMMID COVID-19 working group
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2020
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-020-01712-9

Other articles of this Issue 1/2020

BMC Medicine 1/2020 Go to the issue