Skip to main content
Top
Published in: BMC Geriatrics 1/2022

Open Access 01-12-2022 | Sarcopenia | Research

Correlation between hand grip strength and regional muscle mass in older Asian adults: an observational study

Authors: Jessica Chan, Yi-Chien Lu, Melissa Min-Szu Yao, Russell Oliver Kosik

Published in: BMC Geriatrics | Issue 1/2022

Login to get access

Abstract

Background

Previous research has demonstrated a correlation between hand grip strength (HGS) and muscle strength. This study aims to determine the relationship between HGS and muscle mass in older Asian adults.

Methods

We retrospectively reviewed the dual-energy X-ray absorptiometry (DXA) records of 907 older adults (239 (26.4%) men and 668 (73.6%) women) at one medical institution in Taipei, Taiwan, from January 2019, to December 2020. Average age was 74.80 ± 9.43 and 72.93 ± 9.09 for the males and females respectively. The inclusion criteria were: 1) aged 60 and older, 2) underwent a full-body DXA scan, and 3) performed hand grip measurements. Patients with duplicate results, incomplete records, stroke history, and other neurological diseases were excluded. Regional skeletal muscle mass was measured using DXA. HGS was measured using a Jamar handheld dynamometer.

Results

Total lean muscle mass (kg) averaged 43.63 ± 5.81 and 33.16 ± 4.32 for the males and females respectively. Average HGS (kg) was 28.81 ± 9.87 and 19.19 ± 6.17 for the males and females respectively. In both sexes, HGS and regional muscle mass consistently declined after 60 years of age. The rates of decline per decade in upper and lower extremity muscle mass and HGS were 7.06, 4.95, and 12.30%, respectively, for the males, and 3.36, 4.44, and 12.48%, respectively, for the females. In men, HGS significantly correlated with upper (r = 0.576, p < 0.001) and lower extremity muscle mass (r = 0.532, p < 0.001). In women, the correlations between HGS and upper extremity muscle mass (r = 0.262, p < 0.001) and lower extremity muscle mass (r = 0.364, p < 0.001) were less strong, though also statistically significant.

Conclusion

Muscle mass and HGS decline with advancing age in both sexes, though the correlation is stronger in men. HGS measurements are an accurate proxy for muscle mass in older Asian adults, particularly in males.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36(1):228–35.CrossRef Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36(1):228–35.CrossRef
2.
go back to reference Sasaki H, Kasagi F, Yamada M, Fujita S. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med. 2007;120(4):337–42.CrossRef Sasaki H, Kasagi F, Yamada M, Fujita S. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med. 2007;120(4):337–42.CrossRef
3.
go back to reference Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:a439.CrossRef Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:a439.CrossRef
4.
go back to reference Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, et al. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci. 2000;55(3):M168–73.CrossRef Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, et al. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci. 2000;55(3):M168–73.CrossRef
5.
go back to reference Al Snih S, Markides KS, Ray L, Ostir GV, Goodwin JS. Handgrip strength and mortality in older Mexican Americans. J Am Geriatr Soc. 2002;50(7):1250–6.CrossRef Al Snih S, Markides KS, Ray L, Ostir GV, Goodwin JS. Handgrip strength and mortality in older Mexican Americans. J Am Geriatr Soc. 2002;50(7):1250–6.CrossRef
6.
go back to reference Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.CrossRef Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7.CrossRef
7.
go back to reference Rantanen T, Masaki K, He Q, Ross GW, Willcox BJ, White L. Midlife muscle strength and human longevity up to age 100 years: a 44-year prospective study among a decedent cohort. Age (Dordr). 2012;34(3):563–70.CrossRef Rantanen T, Masaki K, He Q, Ross GW, Willcox BJ, White L. Midlife muscle strength and human longevity up to age 100 years: a 44-year prospective study among a decedent cohort. Age (Dordr). 2012;34(3):563–70.CrossRef
8.
go back to reference Ling CH, Taekema D, de Craen AJ, Gussekloo J, Westendorp RG, Maier AB. Handgrip strength and mortality in the oldest old population: the Leiden 85-plus study. CMAJ. 2010;182(5):429–35.CrossRef Ling CH, Taekema D, de Craen AJ, Gussekloo J, Westendorp RG, Maier AB. Handgrip strength and mortality in the oldest old population: the Leiden 85-plus study. CMAJ. 2010;182(5):429–35.CrossRef
9.
go back to reference Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med. 2015;26(5):303–10.CrossRef Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med. 2015;26(5):303–10.CrossRef
10.
go back to reference FitzGerald SJ, Barlow CE, Kampert JB, Morrow JR, Jackson AW, Blair SN. Muscular fitness and all-cause mortality: prospective observations. J Phys Act Health. 2004;1(1):7–18.CrossRef FitzGerald SJ, Barlow CE, Kampert JB, Morrow JR, Jackson AW, Blair SN. Muscular fitness and all-cause mortality: prospective observations. J Phys Act Health. 2004;1(1):7–18.CrossRef
11.
go back to reference Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.CrossRef Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.CrossRef
12.
go back to reference Kolodziej M, Ignasiak Z, Ignasiak T. Annual changes in appendicular skeletal muscle mass and quality in adults over 50 y of age, assessed using bioelectrical impedance analysis. Nutrition. 2021;90:111342.CrossRef Kolodziej M, Ignasiak Z, Ignasiak T. Annual changes in appendicular skeletal muscle mass and quality in adults over 50 y of age, assessed using bioelectrical impedance analysis. Nutrition. 2021;90:111342.CrossRef
13.
go back to reference Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Tembo MC, Mohebbi M, et al. Handgrip strength and muscle quality in Australian women: cross-sectional data from the Geelong osteoporosis study. J Cachexia Sarcopenia Muscle. 2020;11(3):690–7.CrossRef Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Tembo MC, Mohebbi M, et al. Handgrip strength and muscle quality in Australian women: cross-sectional data from the Geelong osteoporosis study. J Cachexia Sarcopenia Muscle. 2020;11(3):690–7.CrossRef
14.
go back to reference Ong HL, Abdin E, Chua BY, Zhang Y, Seow E, Vaingankar JA, et al. Hand-grip strength among older adults in Singapore: a comparison with international norms and associative factors. BMC Geriatr. 2017;17(1):176.CrossRef Ong HL, Abdin E, Chua BY, Zhang Y, Seow E, Vaingankar JA, et al. Hand-grip strength among older adults in Singapore: a comparison with international norms and associative factors. BMC Geriatr. 2017;17(1):176.CrossRef
15.
go back to reference Bohannon RW. Grip strength: an indispensable biomarker for older adults. Clin Interv Aging. 2019;14:1681–91.CrossRef Bohannon RW. Grip strength: an indispensable biomarker for older adults. Clin Interv Aging. 2019;14:1681–91.CrossRef
16.
go back to reference Wind AE, Takken T, Helders PJ, Engelbert RH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010;169(3):281–7.CrossRef Wind AE, Takken T, Helders PJ, Engelbert RH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010;169(3):281–7.CrossRef
17.
go back to reference Choe YR, Jeong JR, Kim YP. Grip strength mediates the relationship between muscle mass and frailty. J Cachexia Sarcopenia Muscle. 2020;11(2):441–51.CrossRef Choe YR, Jeong JR, Kim YP. Grip strength mediates the relationship between muscle mass and frailty. J Cachexia Sarcopenia Muscle. 2020;11(2):441–51.CrossRef
18.
go back to reference Shimokata H, Ando F, Yuki A, Otsuka R. Age-related changes in skeletal muscle mass among community-dwelling Japanese: a 12-year longitudinal study. Geriatr Gerontol Int. 2014;14(Suppl 1):85–92.CrossRef Shimokata H, Ando F, Yuki A, Otsuka R. Age-related changes in skeletal muscle mass among community-dwelling Japanese: a 12-year longitudinal study. Geriatr Gerontol Int. 2014;14(Suppl 1):85–92.CrossRef
19.
go back to reference Horpibulsuk J, Nutkhum W, Jongjol P. Handgrip strength of community-dwelling elderly in Nakhon Ratchasima Province, Thailand. Chiang Mai Med J. 2019;58(1):15–22. Horpibulsuk J, Nutkhum W, Jongjol P. Handgrip strength of community-dwelling elderly in Nakhon Ratchasima Province, Thailand. Chiang Mai Med J. 2019;58(1):15–22.
20.
go back to reference Wu SW, Wu SF, Liang HW, Wu ZT, Huang S. Measuring factors affecting grip strength in a Taiwan Chinese population and a comparison with consolidated norms. Appl Ergon. 2009;40(4):811–5.CrossRef Wu SW, Wu SF, Liang HW, Wu ZT, Huang S. Measuring factors affecting grip strength in a Taiwan Chinese population and a comparison with consolidated norms. Appl Ergon. 2009;40(4):811–5.CrossRef
21.
go back to reference Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985). 2000;89(1):81–8.CrossRef Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985). 2000;89(1):81–8.CrossRef
22.
go back to reference Chalhoub D, Boudreau R, Greenspan S, Newman AB, Zmuda J, Frank-Wilson AW, et al. Associations between lean mass, muscle strength and power, and skeletal size, density and strength in older men. J Bone Miner Res. 2018;33(9):1612–21.CrossRef Chalhoub D, Boudreau R, Greenspan S, Newman AB, Zmuda J, Frank-Wilson AW, et al. Associations between lean mass, muscle strength and power, and skeletal size, density and strength in older men. J Bone Miner Res. 2018;33(9):1612–21.CrossRef
23.
go back to reference Barbat-Artigas S, Plouffe S, Pion CH, Aubertin-Leheudre M. Toward a sex-specific relationship between muscle strength and appendicular lean body mass index? J Cachexia Sarcopenia Muscle. 2013;4(2):137–44.CrossRef Barbat-Artigas S, Plouffe S, Pion CH, Aubertin-Leheudre M. Toward a sex-specific relationship between muscle strength and appendicular lean body mass index? J Cachexia Sarcopenia Muscle. 2013;4(2):137–44.CrossRef
24.
go back to reference Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123–32.CrossRef Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123–32.CrossRef
25.
go back to reference Cauley JA, Petrini AM, LaPorte RE, Sandler RB, Bayles CM, Robertson RJ, et al. The decline of grip strength in the menopause: relationship to physical activity, estrogen use and anthropometric factors. J Chronic Dis. 1987;40(2):115–20.CrossRef Cauley JA, Petrini AM, LaPorte RE, Sandler RB, Bayles CM, Robertson RJ, et al. The decline of grip strength in the menopause: relationship to physical activity, estrogen use and anthropometric factors. J Chronic Dis. 1987;40(2):115–20.CrossRef
26.
go back to reference Chiu HT, Shih MT, Chen WL. Examining the association between grip strength and testosterone. Aging Male. 2020;23(5):915–22.CrossRef Chiu HT, Shih MT, Chen WL. Examining the association between grip strength and testosterone. Aging Male. 2020;23(5):915–22.CrossRef
Metadata
Title
Correlation between hand grip strength and regional muscle mass in older Asian adults: an observational study
Authors
Jessica Chan
Yi-Chien Lu
Melissa Min-Szu Yao
Russell Oliver Kosik
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Sarcopenia
Published in
BMC Geriatrics / Issue 1/2022
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-022-02898-8

Other articles of this Issue 1/2022

BMC Geriatrics 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine