Skip to main content
Top
Published in: BMC Cancer 1/2021

01-12-2021 | Sarcoma | Research article

Systematic profiling of diagnostic and prognostic value of autophagy-related genes for sarcoma patients

Authors: Yuanhe Wang, Jianyi Li, Cheng Shao, Xiaojie Tang, Yukun Du, Tongshuai Xu, Zheng Zhao, Huiqiang Hu, Yingyi Sheng, Chuan Hu, Yongming Xi

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Autophagy-related genes (ARGs) have been confirmed to have an important role in tumorigenesis and tumor microenvironment formation. Nevertheless, a systematic analysis of ARGs and their clinical significance in sarcoma patients is lacking.

Methods

Gene expression files from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx) were used to select differentially expressed genes (DEGs). Differentially expressed ARGs (DEARGs) were determined by matching the DEG and HADb gene sets, which were evaluated by functional enrichment analysis. Unsupervised clustering of the identified DEARGs was conducted, and associations with tumor microenvironment (TME), immune checkpoints, and immune cells were analyzed simultaneously. Two prognostic signatures, one for overall survival (OS) and one for disease-free survival (DFS), were established and validated in an independent set.

Results

In total, 84 DEARGs and two clusters were identified. TME scores, five immune checkpoints, and several types of immune cells were found to be significantly different between two clusters. Two prognostic signatures incorporating DEARGs showed favorable discrimination and were successfully validated. Two nomograms combining signature and clinical variables were generated. The C-indexes were 0.818 and 0.747 for the OS and DFS nomograms, respectively.

Conclusion

This comprehensive analyses of the ARG landscape in sarcoma showed novel ARGs related to carcinogenesis and the immune microenvironment. These findings have implications for prognosis and therapeutic responses, which reveal novel potential prognostic biomarkers, promote precision medicine, and provide potential novel targets for immunotherapy.
Literature
1.
go back to reference von Mehren M, Randall RL, Benjamin RS, et al. Soft tissue sarcoma, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(6):758–86.CrossRef von Mehren M, Randall RL, Benjamin RS, et al. Soft tissue sarcoma, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(6):758–86.CrossRef
2.
go back to reference Blay JY, Ray-Coquard I. Sarcoma in 2016: Evolving biological understanding and treatment of sarcomas. Nat Rev Clin Oncol. 2017;14(2):78–80.PubMedCrossRef Blay JY, Ray-Coquard I. Sarcoma in 2016: Evolving biological understanding and treatment of sarcomas. Nat Rev Clin Oncol. 2017;14(2):78–80.PubMedCrossRef
4.
go back to reference Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91.PubMedCrossRef Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91.PubMedCrossRef
5.
go back to reference Ahmed N, Brawley VS, Hegde M, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.PubMedPubMedCentralCrossRef Ahmed N, Brawley VS, Hegde M, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Wirries A, Jabari S, Jansen EP, et al. Panobinostat mediated cell death: a novel therapeutic approach for osteosarcoma. Oncotarget. 2018;9(68):32997–3010.PubMedPubMedCentralCrossRef Wirries A, Jabari S, Jansen EP, et al. Panobinostat mediated cell death: a novel therapeutic approach for osteosarcoma. Oncotarget. 2018;9(68):32997–3010.PubMedPubMedCentralCrossRef
12.
13.
go back to reference Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10(1):51–64.PubMedPubMedCentralCrossRef Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10(1):51–64.PubMedPubMedCentralCrossRef
14.
go back to reference Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem. 2011;80:125–56.PubMedCrossRef Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem. 2011;80:125–56.PubMedCrossRef
15.
go back to reference Wang C, Hu Q, Shen HM. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res. 2016;105:164–75.PubMedCrossRef Wang C, Hu Q, Shen HM. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res. 2016;105:164–75.PubMedCrossRef
17.
go back to reference Ruocco N, Costantini S, Costantini M. Blue-Print Autophagy: Potential for Cancer Treatment. Mar Drugs. 2016;14(7):138. Ruocco N, Costantini S, Costantini M. Blue-Print Autophagy: Potential for Cancer Treatment. Mar Drugs. 2016;14(7):138.
18.
go back to reference Zhao GS, Gao ZR, Zhang Q, et al. TSSC3 promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis. J Exp Clin Cancer Res. 2018;37(1):188.PubMedPubMedCentralCrossRef Zhao GS, Gao ZR, Zhang Q, et al. TSSC3 promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis. J Exp Clin Cancer Res. 2018;37(1):188.PubMedPubMedCentralCrossRef
19.
go back to reference Muscolino E, Schmitz R, Loroch S, et al. Herpesviruses induce aggregation and selective autophagy of host signalling proteins NEMO and RIPK1 as an immune-evasion mechanism. Nat Microbiol. 2020;5(2):331–42.PubMedCrossRef Muscolino E, Schmitz R, Loroch S, et al. Herpesviruses induce aggregation and selective autophagy of host signalling proteins NEMO and RIPK1 as an immune-evasion mechanism. Nat Microbiol. 2020;5(2):331–42.PubMedCrossRef
20.
go back to reference D’Arcangelo D, Giampietri C, Muscio M, et al. WIPI1, BAG1, and PEX3 Autophagy-Related Genes Are Relevant Melanoma Markers. Oxidative Med Cell Longev. 2018;2018:1471682.CrossRef D’Arcangelo D, Giampietri C, Muscio M, et al. WIPI1, BAG1, and PEX3 Autophagy-Related Genes Are Relevant Melanoma Markers. Oxidative Med Cell Longev. 2018;2018:1471682.CrossRef
21.
go back to reference Du Y, Zhao E, Zhang Y. Identification of feature autophagy-related genes in patients with acute myocardial infarction based on bioinformatics analysis. Biosci Rep. 2020;40(7):BSR20200790. Du Y, Zhao E, Zhang Y. Identification of feature autophagy-related genes in patients with acute myocardial infarction based on bioinformatics analysis. Biosci Rep. 2020;40(7):BSR20200790.
22.
go back to reference Chen M, Zhang S, Nie Z, et al. Identification of an Autophagy-Related Prognostic Signature for Clear Cell Renal Cell Carcinoma. Front Oncol. 2020;10:873. Chen M, Zhang S, Nie Z, et al. Identification of an Autophagy-Related Prognostic Signature for Clear Cell Renal Cell Carcinoma. Front Oncol. 2020;10:873.
23.
go back to reference Qiu J, Sun M, Wang Y, et al. Identification and validation of an individualized autophagy-clinical prognostic index in gastric cancer patients. Cancer Cell Int. 2020;20:1–11.CrossRef Qiu J, Sun M, Wang Y, et al. Identification and validation of an individualized autophagy-clinical prognostic index in gastric cancer patients. Cancer Cell Int. 2020;20:1–11.CrossRef
24.
go back to reference Yue P, Zhu C, Gao Y, et al. Development of an autophagy-related signature in pancreatic adenocarcinoma. Biomed Pharmacother. 2020;126:110080.PubMedCrossRef Yue P, Zhu C, Gao Y, et al. Development of an autophagy-related signature in pancreatic adenocarcinoma. Biomed Pharmacother. 2020;126:110080.PubMedCrossRef
25.
go back to reference Wang Q-W, Liu H-J, Zhao Z, et al. Prognostic Correlation of Autophagy-Related Gene Expression-Based Risk Signature in Patients with Glioblastoma. OncoTargets Ther. 2020;13:95.CrossRef Wang Q-W, Liu H-J, Zhao Z, et al. Prognostic Correlation of Autophagy-Related Gene Expression-Based Risk Signature in Patients with Glioblastoma. OncoTargets Ther. 2020;13:95.CrossRef
26.
go back to reference Riggi N, Cironi L, Suvà ML, et al. Sarcomas: genetics, signalling, and cellular origins. Part 1: the fellowship of TET. J Pathol. 2007;213(1):4–20.PubMedCrossRef Riggi N, Cironi L, Suvà ML, et al. Sarcomas: genetics, signalling, and cellular origins. Part 1: the fellowship of TET. J Pathol. 2007;213(1):4–20.PubMedCrossRef
27.
go back to reference Min L, Choy E, Pollock RE, et al. Autophagy as a potential target for sarcoma treatment. Biochim Biophys Acta Rev Cancer. 2017;1868(1):40–50.PubMedCrossRef Min L, Choy E, Pollock RE, et al. Autophagy as a potential target for sarcoma treatment. Biochim Biophys Acta Rev Cancer. 2017;1868(1):40–50.PubMedCrossRef
28.
go back to reference Lee YH, Tokunaga T, Oshika Y, et al. Cell-retained isoforms of vascular endothelial growth factor (VEGF) are correlated with poor prognosis in osteosarcoma. Eur J Cancer. 1999;35(7):1089–93.PubMedCrossRef Lee YH, Tokunaga T, Oshika Y, et al. Cell-retained isoforms of vascular endothelial growth factor (VEGF) are correlated with poor prognosis in osteosarcoma. Eur J Cancer. 1999;35(7):1089–93.PubMedCrossRef
29.
go back to reference Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.PubMedCrossRef Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.PubMedCrossRef
30.
go back to reference Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385–403.PubMedCrossRef Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385–403.PubMedCrossRef
31.
go back to reference Subbiah V, Meyer C, Zinner R, et al. Phase Ib/II study of the safety and efficacy of combination therapy with multikinase VEGF inhibitor Pazopanib and MEK inhibitor Trametinib in advanced soft tissue sarcoma. Clin Cancer Res. 2017;23(15):4027–34.PubMedPubMedCentralCrossRef Subbiah V, Meyer C, Zinner R, et al. Phase Ib/II study of the safety and efficacy of combination therapy with multikinase VEGF inhibitor Pazopanib and MEK inhibitor Trametinib in advanced soft tissue sarcoma. Clin Cancer Res. 2017;23(15):4027–34.PubMedPubMedCentralCrossRef
32.
go back to reference Mika A, Luelling SE, Pavek A, et al. Epigenetic Changes at the Birc5 Promoter Induced by YM155 in Synovial Sarcoma. J Clin Med. 2019;8(3):408. Mika A, Luelling SE, Pavek A, et al. Epigenetic Changes at the Birc5 Promoter Induced by YM155 in Synovial Sarcoma. J Clin Med. 2019;8(3):408.
33.
go back to reference Niedan S, Kauer M, Aryee DN, et al. Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional sub-signature of EWS-FLI1 in Ewing sarcoma. Oncogene. 2014;33(30):3927–38.PubMedCrossRef Niedan S, Kauer M, Aryee DN, et al. Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional sub-signature of EWS-FLI1 in Ewing sarcoma. Oncogene. 2014;33(30):3927–38.PubMedCrossRef
35.
Metadata
Title
Systematic profiling of diagnostic and prognostic value of autophagy-related genes for sarcoma patients
Authors
Yuanhe Wang
Jianyi Li
Cheng Shao
Xiaojie Tang
Yukun Du
Tongshuai Xu
Zheng Zhao
Huiqiang Hu
Yingyi Sheng
Chuan Hu
Yongming Xi
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Sarcoma
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07596-5

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine