Skip to main content
Top
Published in: Pathology & Oncology Research 4/2020

01-10-2020 | Sarcoma | Review

Review: Ewing Sarcoma Predisposition

Authors: Pablo Gargallo, Yania Yáñez, Antonio Juan, Vanessa Segura, Julia Balaguer, Bárbara Torres, Silves Oltra, Victoria Castel, Adela Cañete

Published in: Pathology & Oncology Research | Issue 4/2020

Login to get access

Abstract

Ewing sarcoma is a rare tumor developed in bone and soft tissues of children and teenagers. This entity is biologically led by a chromosomal translocation, typically including EWS and FLI1 genes. Little is known about Ewing sarcoma predisposition, although the role of environmental factors, ethnicity and certain polymorphisms on Ewing sarcoma susceptibility has been studied during the last few years. Its prevalence among cancer predisposition syndromes has also been thoroughly examined. This review summarizes the available evidence on predisposing factors involved in Ewing sarcoma susceptibility. On the basis of these data, an integrated approach of the most influential factors on Ewing sarcoma predisposition is proposed.
Literature
1.
go back to reference Horowitz M, Malawer M, Woo S, et al. Ewing's Sarcoma Family of Tumors: Ewing's Sarcoma of Bone and Soft Tissue and the Peripheral Primitive Neuroectodermal Tumors. Pizzo, PA.; Poplack, DG., editors. Principles and Practice of Pediatric Oncology. Philadelphia: Lippincott-Raven Publishers; 1997. p. 831–863 Horowitz M, Malawer M, Woo S, et al. Ewing's Sarcoma Family of Tumors: Ewing's Sarcoma of Bone and Soft Tissue and the Peripheral Primitive Neuroectodermal Tumors. Pizzo, PA.; Poplack, DG., editors. Principles and Practice of Pediatric Oncology. Philadelphia: Lippincott-Raven Publishers; 1997. p. 831–863
2.
go back to reference Young IL, Percy CL, Asire AI (1981) Surveillance, epidemiology, and end results: incidence and mortality data, 1973-1977. Nat I Cancer Inst Monogr 57:149 Young IL, Percy CL, Asire AI (1981) Surveillance, epidemiology, and end results: incidence and mortality data, 1973-1977. Nat I Cancer Inst Monogr 57:149
3.
go back to reference Worch J, Cyrus J, Goldsby R, Matthay KK, Neuhaus J, DuBois SG (2011) Racial differences in the incidence of mesenchymal tumors associated with EWSR1 translocation. Cancer Epidemiol Biomark Prev 20(3):449–453 Worch J, Cyrus J, Goldsby R, Matthay KK, Neuhaus J, DuBois SG (2011) Racial differences in the incidence of mesenchymal tumors associated with EWSR1 translocation. Cancer Epidemiol Biomark Prev 20(3):449–453
4.
go back to reference Nakata K, Ito Y, Magadi W, Bonaventure A, Stiller CA, Katanoda K et al (2018) Childhood cancer incidence and survival in Japan and England: a population-based study (1993-2010). Cancer Sci 109(2):422–434PubMed Nakata K, Ito Y, Magadi W, Bonaventure A, Stiller CA, Katanoda K et al (2018) Childhood cancer incidence and survival in Japan and England: a population-based study (1993-2010). Cancer Sci 109(2):422–434PubMed
5.
go back to reference Polednak AP (1985) Primary bone cancer incidence in black and white residents of New York State. Cancer (Phila) 55:2883–2888 Polednak AP (1985) Primary bone cancer incidence in black and white residents of New York State. Cancer (Phila) 55:2883–2888
6.
go back to reference Glass AG, Fraumeni JF (1970) Epidemiology of bone cancer in children. J Natl Cancer Inst 44(1):187–199PubMed Glass AG, Fraumeni JF (1970) Epidemiology of bone cancer in children. J Natl Cancer Inst 44(1):187–199PubMed
7.
go back to reference Fraumeni JF, Glass AG (1970) Rarity of Ewing’s sarcoma among U.S. Negro children. Lancet 1:366–367PubMed Fraumeni JF, Glass AG (1970) Rarity of Ewing’s sarcoma among U.S. Negro children. Lancet 1:366–367PubMed
8.
go back to reference Jensen RD, Drake RM (1970) Rarity of Ewing’s tumour in negroes. Lancet. 1:777PubMed Jensen RD, Drake RM (1970) Rarity of Ewing’s tumour in negroes. Lancet. 1:777PubMed
9.
go back to reference Linden G, Dunn IE (1970) Ewing’s sarcoma in negroes. Lancet 1:1171PubMed Linden G, Dunn IE (1970) Ewing’s sarcoma in negroes. Lancet 1:1171PubMed
10.
go back to reference Eddington GM, Bohrer SP, Middlemass IH (1970) Ewing’s sarcoma in negroes. Lancet. 1:1171–1172 Eddington GM, Bohrer SP, Middlemass IH (1970) Ewing’s sarcoma in negroes. Lancet. 1:1171–1172
11.
go back to reference Oyemade GA, Abioye AA (1982) Primary malignant tumors of bone: incidence in Ibadan, Nigeria. I NatI Med Assoc 74:65–68 Oyemade GA, Abioye AA (1982) Primary malignant tumors of bone: incidence in Ibadan, Nigeria. I NatI Med Assoc 74:65–68
12.
go back to reference Kramer S, Meadows AT, Jarrett P, Evans AE (1983) Incidence of childhood cancer: experience of a decade in a population-based registry. I NatI Cancer Inst 10:49–55 Kramer S, Meadows AT, Jarrett P, Evans AE (1983) Incidence of childhood cancer: experience of a decade in a population-based registry. I NatI Cancer Inst 10:49–55
13.
go back to reference Li FP, Tu JT, Liu FS, Shiang EL (1980) Rarity of Ewing’s sarcoma in China. Lancet. 1:1255PubMed Li FP, Tu JT, Liu FS, Shiang EL (1980) Rarity of Ewing’s sarcoma in China. Lancet. 1:1255PubMed
14.
go back to reference Savita S, Stephen L (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet. 204(7):351–365 Savita S, Stephen L (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet. 204(7):351–365
15.
go back to reference Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7:250–256PubMed Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7:250–256PubMed
16.
go back to reference Sankar S, Bell R, Stephens B, Zhuo R, Sharma S, Bearss DJ et al (2013) Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene. 32:5089–5100PubMed Sankar S, Bell R, Stephens B, Zhuo R, Sharma S, Bearss DJ et al (2013) Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene. 32:5089–5100PubMed
17.
go back to reference Lessnick SL, Ladanyi M (2012) Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol 7:145–159PubMed Lessnick SL, Ladanyi M (2012) Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol 7:145–159PubMed
18.
go back to reference Takigami I, Ohno T, Kitade Y, Hara A, Nagano A, Kawai G et al (2011) Synthetic siRNA targeting the breakpoint of EWS/Fli-1 inhibits growth of Ewing sarcoma xenografts in a mouse model. Int J Cancer 128:216–226PubMed Takigami I, Ohno T, Kitade Y, Hara A, Nagano A, Kawai G et al (2011) Synthetic siRNA targeting the breakpoint of EWS/Fli-1 inhibits growth of Ewing sarcoma xenografts in a mouse model. Int J Cancer 128:216–226PubMed
19.
go back to reference Maksimenko A, Malvy C (2005) Oncogene-targeted antisense oligonucleotides for the treatment of Ewing sarcoma. Expert OpinTher Targets 9:825–830 Maksimenko A, Malvy C (2005) Oncogene-targeted antisense oligonucleotides for the treatment of Ewing sarcoma. Expert OpinTher Targets 9:825–830
20.
go back to reference Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V (2006) Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing's sarcoma. Clin Cancer Res 12:6781–6790PubMed Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V (2006) Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing's sarcoma. Clin Cancer Res 12:6781–6790PubMed
21.
go back to reference Stoll G, Surdez D, Tirode F, Laud K, Barillot E, Zinovyev A et al (2013) Systems biology of Ewing sarcoma: a network model of EWS-FLI1 effect on proliferation and apoptosis. Nucleic Acids Res 41(19):8853–8871PubMedPubMedCentral Stoll G, Surdez D, Tirode F, Laud K, Barillot E, Zinovyev A et al (2013) Systems biology of Ewing sarcoma: a network model of EWS-FLI1 effect on proliferation and apoptosis. Nucleic Acids Res 41(19):8853–8871PubMedPubMedCentral
22.
go back to reference Riggi N, Knoechel B, Shawn M, Rheinbay E, Boulay G, Suvà M et al (2014) EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26(5):668–681PubMedPubMedCentral Riggi N, Knoechel B, Shawn M, Rheinbay E, Boulay G, Suvà M et al (2014) EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26(5):668–681PubMedPubMedCentral
23.
go back to reference Bilke S, Schwentner R, Yang F, Kauer M, Jug G, Walker RL et al (2013) Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer. Genome Res 23:1797–1809PubMedPubMedCentral Bilke S, Schwentner R, Yang F, Kauer M, Jug G, Walker RL et al (2013) Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer. Genome Res 23:1797–1809PubMedPubMedCentral
24.
go back to reference Gangwal K, Close D, Enriquez CA, Hill CP, Lessnick SL (2010) Emergent properties of EWS/FLI regulation via GGAA microsatellites in Ewing's sarcoma. Genes Cancer 1:177–187PubMedPubMedCentral Gangwal K, Close D, Enriquez CA, Hill CP, Lessnick SL (2010) Emergent properties of EWS/FLI regulation via GGAA microsatellites in Ewing's sarcoma. Genes Cancer 1:177–187PubMedPubMedCentral
25.
go back to reference Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA et al (2008) Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc Natl Acad Sci U S A 105:10149–10154PubMedPubMedCentral Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA et al (2008) Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc Natl Acad Sci U S A 105:10149–10154PubMedPubMedCentral
26.
go back to reference Guillon N, Tirode F, Boeva V, Zynovyev A, Barillot E, Delattre O (2009) The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One 4:e4932PubMedPubMedCentral Guillon N, Tirode F, Boeva V, Zynovyev A, Barillot E, Delattre O (2009) The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One 4:e4932PubMedPubMedCentral
27.
go back to reference Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD, Davis IJ (2012) Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res 22:259–270PubMedPubMedCentral Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD, Davis IJ (2012) Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res 22:259–270PubMedPubMedCentral
28.
go back to reference Roberts P, Burchill SA, Brownhill S, Cullinane CJ, Johnston C, Griffiths MJ et al (2008) Ploidy and karyotype complexity are powerful prognostic indicators in the Ewingʼs sarcoma family of tumors: a study by the United Kingdom cancer cytogenetics and the childrenʼs cancer and leukaemia group. Genes Chromosomes Cancer 47:207–220PubMed Roberts P, Burchill SA, Brownhill S, Cullinane CJ, Johnston C, Griffiths MJ et al (2008) Ploidy and karyotype complexity are powerful prognostic indicators in the Ewingʼs sarcoma family of tumors: a study by the United Kingdom cancer cytogenetics and the childrenʼs cancer and leukaemia group. Genes Chromosomes Cancer 47:207–220PubMed
29.
go back to reference Mackintosh C, Ordonez JL, Garcia-Dominguez DJ, Sevillano V, Llombart-Bosch A, Szuhai K et al (2012) 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene. 31:1287–1298PubMed Mackintosh C, Ordonez JL, Garcia-Dominguez DJ, Sevillano V, Llombart-Bosch A, Szuhai K et al (2012) 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene. 31:1287–1298PubMed
30.
go back to reference Hattinger CM, Pötschger U, Tarkkanen M, Squire J, Zielenska M, Kiuru-Kuhlefelt S et al (2002) Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer 86:1763–1769PubMedPubMedCentral Hattinger CM, Pötschger U, Tarkkanen M, Squire J, Zielenska M, Kiuru-Kuhlefelt S et al (2002) Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer 86:1763–1769PubMedPubMedCentral
31.
go back to reference Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 466:869–873PubMed Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 466:869–873PubMed
32.
go back to reference Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S et al (2014) The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 10(7):e1004475PubMedPubMedCentral Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S et al (2014) The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 10(7):e1004475PubMedPubMedCentral
33.
go back to reference Winn DM, Li FP, Robison LL, Mulvihill JJ, Daigle AE, Fraumeni JF (1992) A case-control study of the etiology of Ewing's sarcoma. Cancer Epidemiol Biomark Prev 1(7):525–532 Winn DM, Li FP, Robison LL, Mulvihill JJ, Daigle AE, Fraumeni JF (1992) A case-control study of the etiology of Ewing's sarcoma. Cancer Epidemiol Biomark Prev 1(7):525–532
34.
go back to reference Abbott D, Randall RL, Schiffman J, Lessnick S, Cannon-Albright LA. A population-based survey of excess cancers observed in Ewing's sarcoma and in their first-, second-, and third-degree relatives. Cancer Res. 2015; 75(15 Suppl): Abstract nr 2748. https://doi.org/10.1158/1538-7445 Abbott D, Randall RL, Schiffman J, Lessnick S, Cannon-Albright LA. A population-based survey of excess cancers observed in Ewing's sarcoma and in their first-, second-, and third-degree relatives. Cancer Res. 2015; 75(15 Suppl): Abstract nr 2748. https://​doi.​org/​10.​1158/​1538-7445
35.
go back to reference Riggi N, Cironi L, Provero P, Suva ML, Kaloulis K et al (2005) Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468PubMed Riggi N, Cironi L, Provero P, Suva ML, Kaloulis K et al (2005) Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468PubMed
36.
go back to reference Riggi N, Suva ML, De Vito C, Provero P, Stehle JC et al (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell eprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24:916–932PubMedPubMedCentral Riggi N, Suva ML, De Vito C, Provero P, Stehle JC et al (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell eprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24:916–932PubMedPubMedCentral
37.
go back to reference Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P et al (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429PubMed Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P et al (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429PubMed
38.
go back to reference Toomey EC, Schiffman JD, Lessnick SL (2010) Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene. 29:4504–4516PubMedPubMedCentral Toomey EC, Schiffman JD, Lessnick SL (2010) Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene. 29:4504–4516PubMedPubMedCentral
39.
go back to reference Von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L et al (2011) Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One 6:e19305 Von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L et al (2011) Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One 6:e19305
40.
go back to reference Ross KA, Smyth NA, Murawski Kennedy JG (2013) The biology of Ewing sarcoma. ISRN Oncol 759725 Ross KA, Smyth NA, Murawski Kennedy JG (2013) The biology of Ewing sarcoma. ISRN Oncol 759725
41.
go back to reference Amaral AT, Manara MC, Berghuis D, Ordóñez JL, Biscuola M, Lopez-García MA et al (2014) Characterization of human Mesenchymal stem cells from Ewing sarcoma patients. Pathogenetic Implications. Plos One 9:e85814PubMedPubMedCentral Amaral AT, Manara MC, Berghuis D, Ordóñez JL, Biscuola M, Lopez-García MA et al (2014) Characterization of human Mesenchymal stem cells from Ewing sarcoma patients. Pathogenetic Implications. Plos One 9:e85814PubMedPubMedCentral
42.
go back to reference Johnson JJ, Chen W, Hudson W, Yao Q, Taylor M et al (2003) Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood. 101:3229–3235PubMed Johnson JJ, Chen W, Hudson W, Yao Q, Taylor M et al (2003) Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood. 101:3229–3235PubMed
43.
go back to reference Kovar H, Amatruda J, Brunet E, Burdach S, Cidre-Aranaz F, de Alava E et al (2016) The second European interdisciplinary Ewing sarcoma research summit--a joint effort to deconstructing the multiple layers of a complex disease. Oncotarget. 7(8):8613–8624PubMedPubMedCentral Kovar H, Amatruda J, Brunet E, Burdach S, Cidre-Aranaz F, de Alava E et al (2016) The second European interdisciplinary Ewing sarcoma research summit--a joint effort to deconstructing the multiple layers of a complex disease. Oncotarget. 7(8):8613–8624PubMedPubMedCentral
44.
go back to reference Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D (2017) Pediatric Cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res 23:1–5 Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D (2017) Pediatric Cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res 23:1–5
45.
go back to reference Greer MC, Voss SD, States LJ (2017) Pediatric Cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:6–13 Greer MC, Voss SD, States LJ (2017) Pediatric Cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:6–13
46.
go back to reference Porter CC et al (2017) Recommendations for surveillance for children with leukemia-predisposing conditions. Clin Cancer Res 23:14–22 Porter CC et al (2017) Recommendations for surveillance for children with leukemia-predisposing conditions. Clin Cancer Res 23:14–22
47.
go back to reference Walsh MF et al (2017) Recommendations for childhood Cancer screening and surveillance in DNA repair disorders. Clin Cancer Res 23:23–31 Walsh MF et al (2017) Recommendations for childhood Cancer screening and surveillance in DNA repair disorders. Clin Cancer Res 23:23–31
48.
go back to reference Tabori U et al (2017) Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res 23:32–37 Tabori U et al (2017) Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res 23:32–37
49.
go back to reference Evans DGR et al (2017a) Cancer and central nervous system tumor surveillance in pediatric Neurofibromatosis 1. Clin Cancer Res 23:46–53 Evans DGR et al (2017a) Cancer and central nervous system tumor surveillance in pediatric Neurofibromatosis 1. Clin Cancer Res 23:46–53
50.
go back to reference Evans DGR et al (2017b) Cancer and central nervous system tumor surveillance in pediatric Neurofibromatosis 2 and related disorders. Clin Cancer Res 23:54–61 Evans DGR et al (2017b) Cancer and central nervous system tumor surveillance in pediatric Neurofibromatosis 2 and related disorders. Clin Cancer Res 23:54–61
51.
go back to reference Foulkes WD et al (2017) Cancer surveillance in Gorlin syndrome and Rhabdoid tumor predisposition syndrome. Clin Cancer Res 23:62–67 Foulkes WD et al (2017) Cancer surveillance in Gorlin syndrome and Rhabdoid tumor predisposition syndrome. Clin Cancer Res 23:62–67
52.
go back to reference Rednam SP et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/Paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:68–75 Rednam SP et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/Paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:68–75
53.
go back to reference Schultz KAP et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:76–82 Schultz KAP et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:76–82
54.
go back to reference Villani A et al (2017) Recommendations for Cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased Cancer risk. Clin Cancer Res 23:83–90 Villani A et al (2017) Recommendations for Cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased Cancer risk. Clin Cancer Res 23:83–90
55.
go back to reference Druker H et al (2017) Genetic counselor recommendations for Cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin Cancer Res 23:91–97 Druker H et al (2017) Genetic counselor recommendations for Cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin Cancer Res 23:91–97
56.
go back to reference Kamihara J et al (2017) Retinoblastoma and Neuroblastoma Predisposition and Surveillance. Clin Cancer Res 23:98–106 Kamihara J et al (2017) Retinoblastoma and Neuroblastoma Predisposition and Surveillance. Clin Cancer Res 23:98–106
57.
go back to reference Achatz MI et al (2017) Cancer screening recommendations and clinical Management of Inherited Gastrointestinal Cancer Syndromes in childhood. Clin Cancer Res 23:107–114 Achatz MI et al (2017) Cancer screening recommendations and clinical Management of Inherited Gastrointestinal Cancer Syndromes in childhood. Clin Cancer Res 23:107–114
58.
go back to reference Kalish JM et al (2017) Surveillance recommendations for children with overgrowth syndromes and predisposition to Wilms tumors and Hepatoblastoma. Clin Cancer Res 23:115–122 Kalish JM et al (2017) Surveillance recommendations for children with overgrowth syndromes and predisposition to Wilms tumors and Hepatoblastoma. Clin Cancer Res 23:115–122
59.
go back to reference Wasserman JD et al (2017) Multiple endocrine Neoplasia and Hyperparathyroid-jaw tumor syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:123–132 Wasserman JD et al (2017) Multiple endocrine Neoplasia and Hyperparathyroid-jaw tumor syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:123–132
60.
go back to reference Etzold A, Schröder JC, Bartsch O, Zechner U, Galetzka D (2015) Further evidence for pathogenicity of the TP53 tetramerization domain mutation p.Arg342Pro in Li- Fraumeni syndrome. Fam Cancer. 14(1):161–165PubMed Etzold A, Schröder JC, Bartsch O, Zechner U, Galetzka D (2015) Further evidence for pathogenicity of the TP53 tetramerization domain mutation p.Arg342Pro in Li- Fraumeni syndrome. Fam Cancer. 14(1):161–165PubMed
61.
go back to reference Macedo GS, Araujo Vieira I, Brandalize AP, Giacomazzi J, Inez Palmero E, Volc S (2016) Rare germline variant (rs78378222) in the TP53 3' UTR: evidence for a new mechanism of cancer predisposition in Li-Fraumeni syndrome. Cancer Genet 209(3):97–106PubMed Macedo GS, Araujo Vieira I, Brandalize AP, Giacomazzi J, Inez Palmero E, Volc S (2016) Rare germline variant (rs78378222) in the TP53 3' UTR: evidence for a new mechanism of cancer predisposition in Li-Fraumeni syndrome. Cancer Genet 209(3):97–106PubMed
62.
go back to reference Calvete O, Martinez P, Garcia-Pavia P, Benitez-Buelga C, Paumard-Hernández B, Fernandez V et al (2015) A mutation in the POT1 gene is responsable for cardiac angiosarcoma in TP53-negative Li–Fraumeni-like families. Nat Commun 6:8383PubMedPubMedCentral Calvete O, Martinez P, Garcia-Pavia P, Benitez-Buelga C, Paumard-Hernández B, Fernandez V et al (2015) A mutation in the POT1 gene is responsable for cardiac angiosarcoma in TP53-negative Li–Fraumeni-like families. Nat Commun 6:8383PubMedPubMedCentral
63.
go back to reference Calvete O, Garcia-Pavia P, Domínguez F, Bougeard G, Kunze K, Braeuninger A et al (2017) The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur J Hum Genet 25(11):1278–1281PubMedPubMedCentral Calvete O, Garcia-Pavia P, Domínguez F, Bougeard G, Kunze K, Braeuninger A et al (2017) The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur J Hum Genet 25(11):1278–1281PubMedPubMedCentral
64.
go back to reference Siddiqui R, Onel K, Facio F, Nafa K, Diaz LR, Kauff N (2005) The TP53 mutational spectrum and frequency of CHEK2*1100delC in Li-Fraumeni-like kindreds. Familial Cancer 4(2):177–181PubMed Siddiqui R, Onel K, Facio F, Nafa K, Diaz LR, Kauff N (2005) The TP53 mutational spectrum and frequency of CHEK2*1100delC in Li-Fraumeni-like kindreds. Familial Cancer 4(2):177–181PubMed
65.
go back to reference Varley J (2003) TP53, hChk2, and the Li-Fraumeni syndrome. Methods Mol Biol 222:117–129PubMed Varley J (2003) TP53, hChk2, and the Li-Fraumeni syndrome. Methods Mol Biol 222:117–129PubMed
66.
go back to reference Vahteristo P, Tamminen A, Karvinen P, Eerola H, Eklund C, Altonen LA et al (2001) p53, CHK2, and CHK1 Genes in Finnish Families with Li-Fraumeni Syndrome: Further Evidence of CHK2 in Inherited Cancer Predisposition. Cancer Res 61(15):5718–5722PubMed Vahteristo P, Tamminen A, Karvinen P, Eerola H, Eklund C, Altonen LA et al (2001) p53, CHK2, and CHK1 Genes in Finnish Families with Li-Fraumeni Syndrome: Further Evidence of CHK2 in Inherited Cancer Predisposition. Cancer Res 61(15):5718–5722PubMed
67.
go back to reference Manoukian S, Peissel B, Frigerio S, Lecis D, Bartkova J (2011) RoversiG, et al. two new CHEK2 germline variants detected in breast cancer/sarcoma families negative for BRCA1, BRCA2, and TP53 gene mutations. Breast Cancer Res Treat 130(1):207–215PubMed Manoukian S, Peissel B, Frigerio S, Lecis D, Bartkova J (2011) RoversiG, et al. two new CHEK2 germline variants detected in breast cancer/sarcoma families negative for BRCA1, BRCA2, and TP53 gene mutations. Breast Cancer Res Treat 130(1):207–215PubMed
68.
go back to reference Ruijs MW, Broeks A, Menko FH, Ausems MG, Wagner A, Oldenburg R et al (2009) The contribution of CHEK2 to the TP53-negative Li-Fraumeni phenotype. Hered Cancer Clin Pract 7(1):4PubMedPubMedCentral Ruijs MW, Broeks A, Menko FH, Ausems MG, Wagner A, Oldenburg R et al (2009) The contribution of CHEK2 to the TP53-negative Li-Fraumeni phenotype. Hered Cancer Clin Pract 7(1):4PubMedPubMedCentral
69.
go back to reference Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71(4):747–752PubMed Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71(4):747–752PubMed
70.
go back to reference Mai PL, Best AF, Peters JA, De Castro RM, Khincha PP, Loud JT et al (2016) Risks of first and subsequent cancers among TP53 mutation-carriers in the NCI LFS cohort. Cancer. 122(23):3673–3681PubMedPubMedCentral Mai PL, Best AF, Peters JA, De Castro RM, Khincha PP, Loud JT et al (2016) Risks of first and subsequent cancers among TP53 mutation-carriers in the NCI LFS cohort. Cancer. 122(23):3673–3681PubMedPubMedCentral
71.
go back to reference Birch JM, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M et al (2001) Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 20(34):4621–4628PubMed Birch JM, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M et al (2001) Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 20(34):4621–4628PubMed
72.
go back to reference Mody RJ, Wu YM, Lonigro RJ, Cao X, Roychowdhury S, Vats P et al (2015) Integrative clinical sequencing in themanagement of refractory or relapsed cancer in youth. JAMA 314:913–925PubMedPubMedCentral Mody RJ, Wu YM, Lonigro RJ, Cao X, Roychowdhury S, Vats P et al (2015) Integrative clinical sequencing in themanagement of refractory or relapsed cancer in youth. JAMA 314:913–925PubMedPubMedCentral
73.
go back to reference Harris MH, DuBois SG, Glade Bender JL, Kim A, Crompton BD, Parker E et al (2016) Multicenter feasibility study oftumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized Cancer therapy (iCat) study. JAMA Oncol 2:608–615PubMed Harris MH, DuBois SG, Glade Bender JL, Kim A, Crompton BD, Parker E et al (2016) Multicenter feasibility study oftumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized Cancer therapy (iCat) study. JAMA Oncol 2:608–615PubMed
74.
go back to reference Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ et al (2016) Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med 8:133PubMedPubMedCentral Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ et al (2016) Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med 8:133PubMedPubMedCentral
75.
go back to reference Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K et al (2016) Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2:616–624PubMedPubMedCentral Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K et al (2016) Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2:616–624PubMedPubMedCentral
76.
go back to reference Worst BC, van Tilburg CM, Balasubramanian GP, Fiesel P, Witt R, Freitag A et al (2016) Next-generation personalised medicine for high-risk paediatric cancer patients – the INFORM pilot study. Eur J Cancer 65:91–101PubMed Worst BC, van Tilburg CM, Balasubramanian GP, Fiesel P, Witt R, Freitag A et al (2016) Next-generation personalised medicine for high-risk paediatric cancer patients – the INFORM pilot study. Eur J Cancer 65:91–101PubMed
77.
go back to reference Harttrampf AC, Lacroix L, Deloger M, Deschamps F, Puget S, Auger N et al (2017) MOlecular screening for CancerTreatment optimization (MOSCATO-01) in pediatric patients: a single institutional prospective molecular stratification trial. Clin Cancer Res 23:6101–6112PubMed Harttrampf AC, Lacroix L, Deloger M, Deschamps F, Puget S, Auger N et al (2017) MOlecular screening for CancerTreatment optimization (MOSCATO-01) in pediatric patients: a single institutional prospective molecular stratification trial. Clin Cancer Res 23:6101–6112PubMed
78.
go back to reference Chang W, Brohl AS, Patidara R, Sindiria S, Shern JF, Wei JS et al (2016) Multi-dimensional Omics for precision therapy of children and adolescent Young adults with relapsed and refractory Cancer: report from pediatric oncology branch. NCI Clin Cancer Res 22(15):3810–3820 Chang W, Brohl AS, Patidara R, Sindiria S, Shern JF, Wei JS et al (2016) Multi-dimensional Omics for precision therapy of children and adolescent Young adults with relapsed and refractory Cancer: report from pediatric oncology branch. NCI Clin Cancer Res 22(15):3810–3820
79.
go back to reference Pincez T, Clément N, Lapouble E, Pierron G, Kamal M, Bieche I et al (2017) Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors. Pediatr Blood Cancer 64:e26365 Pincez T, Clément N, Lapouble E, Pierron G, Kamal M, Bieche I et al (2017) Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors. Pediatr Blood Cancer 64:e26365
80.
go back to reference Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J et al (2015) Germline mutations in predisposition genes in pediatric Cancer. N Engl J Med 373(24):2336–2346PubMedPubMedCentral Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J et al (2015) Germline mutations in predisposition genes in pediatric Cancer. N Engl J Med 373(24):2336–2346PubMedPubMedCentral
81.
go back to reference Brohl AS, Patidar R, Turner CE, Wen X, Song YK, Wei JS (2017) Frequent inactivating germline mutations in DNA repair genes in patients with Ewing sarcoma Germline mutations in Ewing sarcoma. Genet Med 19(8):955–958PubMedPubMedCentral Brohl AS, Patidar R, Turner CE, Wen X, Song YK, Wei JS (2017) Frequent inactivating germline mutations in DNA repair genes in patients with Ewing sarcoma Germline mutations in Ewing sarcoma. Genet Med 19(8):955–958PubMedPubMedCentral
82.
go back to reference Lerman D, Monument M, McIlvaine E, Liu X, Huang D, Monovich L et al (2015) TumoralTP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the Children’s oncology group. Pediatr Blood Cancer 62(5):759–765PubMed Lerman D, Monument M, McIlvaine E, Liu X, Huang D, Monovich L et al (2015) TumoralTP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the Children’s oncology group. Pediatr Blood Cancer 62(5):759–765PubMed
83.
go back to reference Id Said B, Kim H, Tran J, Novokmet A, Malkin D (2016) Super-transactivation TP53 variant in the Germline of a family with Li-Fraumeni syndrome. Hum Mutat 37(9):889–892PubMed Id Said B, Kim H, Tran J, Novokmet A, Malkin D (2016) Super-transactivation TP53 variant in the Germline of a family with Li-Fraumeni syndrome. Hum Mutat 37(9):889–892PubMed
84.
go back to reference Marcel V, Palmero EI, Falagan-Lotsch P, Martel-Planche G, Ashton-Prolla P, Olivier M (2009) TP53 PIN3 and MDM2 SNP309 polymorphisms as genetic modifiers in the Li-Fraumeni syndrome: impact on age at first diagnosis. J Med Genet 46(11):766–772PubMed Marcel V, Palmero EI, Falagan-Lotsch P, Martel-Planche G, Ashton-Prolla P, Olivier M (2009) TP53 PIN3 and MDM2 SNP309 polymorphisms as genetic modifiers in the Li-Fraumeni syndrome: impact on age at first diagnosis. J Med Genet 46(11):766–772PubMed
85.
go back to reference Sagne C, Marcel V, Bota M, Martel-Planche G, Nobrega A, Palmero EI et al (2014) Age at cancer onset in germline TP53 mutation carriers: association with polymorphisms in predicted G-quadruplex structures. Carcinogenesis. 35(4):807–815PubMed Sagne C, Marcel V, Bota M, Martel-Planche G, Nobrega A, Palmero EI et al (2014) Age at cancer onset in germline TP53 mutation carriers: association with polymorphisms in predicted G-quadruplex structures. Carcinogenesis. 35(4):807–815PubMed
86.
go back to reference Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L (2006) Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43(6):531–533PubMed Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L (2006) Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43(6):531–533PubMed
87.
go back to reference Ponti F, Corsini S, Gnoli M, Pedrini E, Mordenti M, Sangiorgi L (2016) Evaluation of TP53 Pro72Arg and MDM2 SNP 285-SNP309 polymorphisms in an Italian cohort of LFS suggestive patients lacking identifiable TP53 germline mutations. Familial Cancer 15(4):635–643PubMed Ponti F, Corsini S, Gnoli M, Pedrini E, Mordenti M, Sangiorgi L (2016) Evaluation of TP53 Pro72Arg and MDM2 SNP 285-SNP309 polymorphisms in an Italian cohort of LFS suggestive patients lacking identifiable TP53 germline mutations. Familial Cancer 15(4):635–643PubMed
88.
go back to reference Wu CC, Krahe R, Lozano G, Zhang B, Wilson CD, Jo EJ et al (2011) Joint effects of germ-line p53 mutation, MDM2 SNP309, and gender on Cancer risk in family studies of Li-Fraumeni syndrome. Hum Genet 129(6):663–673PubMedPubMedCentral Wu CC, Krahe R, Lozano G, Zhang B, Wilson CD, Jo EJ et al (2011) Joint effects of germ-line p53 mutation, MDM2 SNP309, and gender on Cancer risk in family studies of Li-Fraumeni syndrome. Hum Genet 129(6):663–673PubMedPubMedCentral
89.
go back to reference Ruijs MW, Schmidt MK, Nevanlinna H, Tommiska J, Aittomäki K, Pruntel R (2007) The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J HumGenet 15(1):110–114 Ruijs MW, Schmidt MK, Nevanlinna H, Tommiska J, Aittomäki K, Pruntel R (2007) The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J HumGenet 15(1):110–114
90.
go back to reference Macedo GS, Vieira IA, Vianna FSL, Alemar B, Giacomazzi J, Brandalize APC et al (2018) P53 signaling pathway polymorphisms, cancer risk and tumor phenotype in TP53 R337H mutation carriers. Familial Cancer 17(2):269–274PubMed Macedo GS, Vieira IA, Vianna FSL, Alemar B, Giacomazzi J, Brandalize APC et al (2018) P53 signaling pathway polymorphisms, cancer risk and tumor phenotype in TP53 R337H mutation carriers. Familial Cancer 17(2):269–274PubMed
91.
go back to reference Renaux-Petel M, Sesboüé R, Baert-Desurmont S, Vasseur S, Fourneaux S, Bessenay E, et al. The MDM2 285G–309G haplotype is associated with an earlier age of tumour onset in patients with Li-Fraumeni syndrome. Fam Cancer. 2014; (1):127–30 Renaux-Petel M, Sesboüé R, Baert-Desurmont S, Vasseur S, Fourneaux S, Bessenay E, et al. The MDM2 285G–309G haplotype is associated with an earlier age of tumour onset in patients with Li-Fraumeni syndrome. Fam Cancer. 2014; (1):127–30
92.
go back to reference Thurow HS, Hartwig FP, Alho CS, Silva DS, Roesler R, Abujamra AL et al (2013) Wing sarcoma: influence of TP53 Arg72Pro and MDM2 T309G SNPs. Mol Biol Rep 40(8):4929–4934PubMed Thurow HS, Hartwig FP, Alho CS, Silva DS, Roesler R, Abujamra AL et al (2013) Wing sarcoma: influence of TP53 Arg72Pro and MDM2 T309G SNPs. Mol Biol Rep 40(8):4929–4934PubMed
93.
go back to reference Kleinerman RA, Tucker MA, Abramson DH, Seddon JM, Tarone RE, Fraumeni JF Jr (2007) Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst 99(1):24–31PubMed Kleinerman RA, Tucker MA, Abramson DH, Seddon JM, Tarone RE, Fraumeni JF Jr (2007) Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst 99(1):24–31PubMed
94.
go back to reference MacCarthy A, Bayne AM, Brownbill PA, Bunch KJ, Diggens NL, Draper GJ et al (2013) Second and subsequent tumours among 1927 retinoblastoma patients diagnosed in Britain 1951–2004. Br J Cancer 108:2455–2463PubMedPubMedCentral MacCarthy A, Bayne AM, Brownbill PA, Bunch KJ, Diggens NL, Draper GJ et al (2013) Second and subsequent tumours among 1927 retinoblastoma patients diagnosed in Britain 1951–2004. Br J Cancer 108:2455–2463PubMedPubMedCentral
95.
go back to reference Cunniff C, Bassetti JA, Ellis NA (2017) Bloom's syndrome: clinical Spectrum, molecular pathogenesis, and Cancer predisposition. Mol Syndromol 8(1):4–23PubMed Cunniff C, Bassetti JA, Ellis NA (2017) Bloom's syndrome: clinical Spectrum, molecular pathogenesis, and Cancer predisposition. Mol Syndromol 8(1):4–23PubMed
96.
go back to reference Laitman Y, Boker-Keinan L, Berkenstadt M, Liphsitz I, Weissglas-Volkov D, Ries-Levavi L et al (2016) The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genet. 209(3):70–74PubMed Laitman Y, Boker-Keinan L, Berkenstadt M, Liphsitz I, Weissglas-Volkov D, Ries-Levavi L et al (2016) The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genet. 209(3):70–74PubMed
97.
go back to reference Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V (2015) Update of the human and mouse Fanconi anemia genes. Hum Genomics 9:32PubMedPubMedCentral Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V (2015) Update of the human and mouse Fanconi anemia genes. Hum Genomics 9:32PubMedPubMedCentral
98.
go back to reference Malric A, Defachelles AS, Leblanc T, Lescoeur B, Lacour B, Peuchmaur M (2015) Fanconi anemia and solid malignancies in childhood: a national retrospective study. Pediatr Blood Cancer 62(3):463–470PubMed Malric A, Defachelles AS, Leblanc T, Lescoeur B, Lacour B, Peuchmaur M (2015) Fanconi anemia and solid malignancies in childhood: a national retrospective study. Pediatr Blood Cancer 62(3):463–470PubMed
99.
go back to reference Wimmer K, Rosenbaum T, Messiaen L (2017) Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet 91(4):507–519PubMed Wimmer K, Rosenbaum T, Messiaen L (2017) Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet 91(4):507–519PubMed
100.
go back to reference Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK et al (2014) Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer 50(5):987–996PubMed Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK et al (2014) Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer 50(5):987–996PubMed
101.
go back to reference Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N (2015) Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet 52(11):770–778PubMed Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N (2015) Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet 52(11):770–778PubMed
102.
go back to reference Kawai K, Iwashita T, Murakami H, Hiraiwa N, Yoshiki A, Kusakabe M et al (2000) Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res 60(18):5254–5260PubMed Kawai K, Iwashita T, Murakami H, Hiraiwa N, Yoshiki A, Kusakabe M et al (2000) Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res 60(18):5254–5260PubMed
103.
go back to reference Martinelli M, Parra A, Scapoli L, De Sanctis P, Chiadini V, Hattinger C et al (2016) CD99 polymorphisms significantly influence the probability to develop Ewing sarcoma in earlier age and patient disease progression. Oncotarget. 7(47):77958–77967PubMedPubMedCentral Martinelli M, Parra A, Scapoli L, De Sanctis P, Chiadini V, Hattinger C et al (2016) CD99 polymorphisms significantly influence the probability to develop Ewing sarcoma in earlier age and patient disease progression. Oncotarget. 7(47):77958–77967PubMedPubMedCentral
104.
go back to reference Silva DS, Sawitzki FR, De Toni EC, Graebin P, Picanco JB, Abujamra AL, de Farias CB, Roesler R, Brunetto AL, Alho CS (2012) Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene. Gene. 509(2):263–266PubMed Silva DS, Sawitzki FR, De Toni EC, Graebin P, Picanco JB, Abujamra AL, de Farias CB, Roesler R, Brunetto AL, Alho CS (2012) Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene. Gene. 509(2):263–266PubMed
105.
go back to reference Wang J, Zhou Y, Feng D, Yang H, Li F, Cao Q, Wang A, Xing F (2012) CD86 +1057G/a polymorphism and susceptibility to Ewing's sarcoma: a case-control study. DNA Cell Biol 31(4):537–540PubMed Wang J, Zhou Y, Feng D, Yang H, Li F, Cao Q, Wang A, Xing F (2012) CD86 +1057G/a polymorphism and susceptibility to Ewing's sarcoma: a case-control study. DNA Cell Biol 31(4):537–540PubMed
106.
go back to reference Zhang C, Hou WH, Ding XX, Wang X, Zhao H, Han XW, Wang WJ (2016) Association of Cytotoxic T-lymphocyte Antigen-4 polymorphisms with malignant bone tumor risk: a meta-analysis. Asian Pac J Cancer Prev 17(8):3785–3791PubMed Zhang C, Hou WH, Ding XX, Wang X, Zhao H, Han XW, Wang WJ (2016) Association of Cytotoxic T-lymphocyte Antigen-4 polymorphisms with malignant bone tumor risk: a meta-analysis. Asian Pac J Cancer Prev 17(8):3785–3791PubMed
107.
go back to reference Postel-Vinay S, Véron AS, Tirode F, Pierron G, Reynaud S, Kovar H et al (2012) Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 44(3):323–327PubMed Postel-Vinay S, Véron AS, Tirode F, Pierron G, Reynaud S, Kovar H et al (2012) Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 44(3):323–327PubMed
108.
go back to reference Grünewald TG, Delattre O (2015) Cooperation between somatic mutations and germline susceptibility variants in tumorigenesis - a dangerous liaison. Mol Cell Oncol 3(3):e1086853PubMedPubMedCentral Grünewald TG, Delattre O (2015) Cooperation between somatic mutations and germline susceptibility variants in tumorigenesis - a dangerous liaison. Mol Cell Oncol 3(3):e1086853PubMedPubMedCentral
109.
go back to reference Machiela MJ, Grünewald TGP, Surdez D, Reynaud S, Mirabeau O, Karlins E et al (2018) Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. Nat Commun 9(1):3184PubMedPubMedCentral Machiela MJ, Grünewald TGP, Surdez D, Reynaud S, Mirabeau O, Karlins E et al (2018) Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. Nat Commun 9(1):3184PubMedPubMedCentral
110.
go back to reference Monument MJ, Johnson KM, Grossmann AH, Schiffman JD, Randall RL, Lessnick SL (2012) Microsatellites with macro-influence in Ewing sarcoma. Genes (Basel) 3(3):444–460 Monument MJ, Johnson KM, Grossmann AH, Schiffman JD, Randall RL, Lessnick SL (2012) Microsatellites with macro-influence in Ewing sarcoma. Genes (Basel) 3(3):444–460
111.
go back to reference Monument MJ, Johnson KM, McIlvaine E, Abegglen L, Watkins WS, Jorde LB et al (2014) Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: a report from the Children's oncology group. PLoS One 9(8):e104378PubMedPubMedCentral Monument MJ, Johnson KM, McIlvaine E, Abegglen L, Watkins WS, Jorde LB et al (2014) Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: a report from the Children's oncology group. PLoS One 9(8):e104378PubMedPubMedCentral
112.
go back to reference Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes and Cancer 35(2):97–112PubMed Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes and Cancer 35(2):97–112PubMed
113.
go back to reference Zucman-Rossi J, Batzer MA, Stoneking M, Delattre O, Thomas G (1997) Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination. Hum Genet 99(3):357–363PubMed Zucman-Rossi J, Batzer MA, Stoneking M, Delattre O, Thomas G (1997) Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination. Hum Genet 99(3):357–363PubMed
114.
go back to reference Randall RL, Lessnick SL, Jones KB, Gouw LG, Cummings JE, Cannon-Albright L (2010) Is there a predisposition gene for Ewing's sarcoma? J Oncol 2010:397632PubMedPubMedCentral Randall RL, Lessnick SL, Jones KB, Gouw LG, Cummings JE, Cannon-Albright L (2010) Is there a predisposition gene for Ewing's sarcoma? J Oncol 2010:397632PubMedPubMedCentral
115.
go back to reference Holly EA, Aston DA, Ahn DK, Kristiansen JJ (1992) Ewing’s bone sarcoma, paternal occupational exposure, and other factors. Am J Epidemiol 135(2):122–129PubMed Holly EA, Aston DA, Ahn DK, Kristiansen JJ (1992) Ewing’s bone sarcoma, paternal occupational exposure, and other factors. Am J Epidemiol 135(2):122–129PubMed
116.
go back to reference Valery PC, Mc Whirter W, Sleigh A, Williams G, Bain C (2002) Farm exposures, parental occupation, and risk of Ewing’s sarcoma in Australia: a national case-control study. Cancer Causes Control 13(3):263–270PubMed Valery PC, Mc Whirter W, Sleigh A, Williams G, Bain C (2002) Farm exposures, parental occupation, and risk of Ewing’s sarcoma in Australia: a national case-control study. Cancer Causes Control 13(3):263–270PubMed
117.
go back to reference Valery PC, Mc Whirter W, Sleigh A, Williams G, Bain C (2003) A national case-control study of Ewing’s sarcoma family of tumours in Australia. Int J Cancer 105(6):825–830PubMed Valery PC, Mc Whirter W, Sleigh A, Williams G, Bain C (2003) A national case-control study of Ewing’s sarcoma family of tumours in Australia. Int J Cancer 105(6):825–830PubMed
118.
go back to reference Valery PC, Williams G, Sleigh A, Holly EA, Kreiger N, Bain C (2005) Parental occupation and Ewing’s sarcoma: pooled and meta-analysis. Int J Cancer 115(5):799–806PubMed Valery PC, Williams G, Sleigh A, Holly EA, Kreiger N, Bain C (2005) Parental occupation and Ewing’s sarcoma: pooled and meta-analysis. Int J Cancer 115(5):799–806PubMed
119.
go back to reference Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B et al (1997) Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is fre quently lost in the Ewing family of tumors. Oncogene. 15:2225–2232PubMed Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B et al (1997) Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is fre quently lost in the Ewing family of tumors. Oncogene. 15:2225–2232PubMed
120.
go back to reference Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD et al (2012) Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Hum Genet 131:1565–1589PubMedPubMedCentral Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD et al (2012) Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Hum Genet 131:1565–1589PubMedPubMedCentral
121.
go back to reference Hanson MA, Skinner MK. Developmental origins of epigenetic transgenerational inheritance. Environ Epigenet. 2016;2(1) Hanson MA, Skinner MK. Developmental origins of epigenetic transgenerational inheritance. Environ Epigenet. 2016;2(1)
122.
go back to reference Nilsson E, Skinner M (2015) Environmentally induced epigenetic Transgenerational inheritance of disease susceptibility. Transl Res 165(1):12–17PubMed Nilsson E, Skinner M (2015) Environmentally induced epigenetic Transgenerational inheritance of disease susceptibility. Transl Res 165(1):12–17PubMed
123.
go back to reference Adkins RM, Thomas F, Tylavsky FA, Krushkal J (2011) Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet 12:47PubMedPubMedCentral Adkins RM, Thomas F, Tylavsky FA, Krushkal J (2011) Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet 12:47PubMedPubMedCentral
124.
go back to reference Joo JE, Dowty JG, Milne RL, Wong EM, Dugué PA, English D et al (2018) Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat Commun 9(1):867PubMedPubMedCentral Joo JE, Dowty JG, Milne RL, Wong EM, Dugué PA, English D et al (2018) Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat Commun 9(1):867PubMedPubMedCentral
125.
go back to reference Haque MM, Nilsson EE, Holder LB, Skinner MK (2016) Genomic clustering of differential DNA methylated regions (epimutations) associated with the epigenetic transgenerational inheritance of disease and phenotypic variation. BMC Genomics 17:418PubMedPubMedCentral Haque MM, Nilsson EE, Holder LB, Skinner MK (2016) Genomic clustering of differential DNA methylated regions (epimutations) associated with the epigenetic transgenerational inheritance of disease and phenotypic variation. BMC Genomics 17:418PubMedPubMedCentral
126.
127.
go back to reference Krepischi AC, Capelli LP, Silva AG, de Araújo ÉS, Pearson PL, Heck B et al (2014) Large germline copy number variations as predisposing factor in childhood neoplasms. Future Oncol 10(9):1627–1633PubMed Krepischi AC, Capelli LP, Silva AG, de Araújo ÉS, Pearson PL, Heck B et al (2014) Large germline copy number variations as predisposing factor in childhood neoplasms. Future Oncol 10(9):1627–1633PubMed
128.
go back to reference Hingorani P, Janeway K, Crompton BD, Kadoch C, Mackall CL, Khan J et al (2016) Current state of pediatric sarcoma biology and opportunities for future discovery: a report from the sarcoma translational research workshop. Cancer Genet. 209(5):182–194PubMedPubMedCentral Hingorani P, Janeway K, Crompton BD, Kadoch C, Mackall CL, Khan J et al (2016) Current state of pediatric sarcoma biology and opportunities for future discovery: a report from the sarcoma translational research workshop. Cancer Genet. 209(5):182–194PubMedPubMedCentral
Metadata
Title
Review: Ewing Sarcoma Predisposition
Authors
Pablo Gargallo
Yania Yáñez
Antonio Juan
Vanessa Segura
Julia Balaguer
Bárbara Torres
Silves Oltra
Victoria Castel
Adela Cañete
Publication date
01-10-2020
Publisher
Springer Netherlands
Keyword
Sarcoma
Published in
Pathology & Oncology Research / Issue 4/2020
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-019-00765-3

Other articles of this Issue 4/2020

Pathology & Oncology Research 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine