Skip to main content
Top
Published in: Experimental Brain Research 4/2010

01-08-2010 | Research Article

Saliency modulates global perception in simultanagnosia

Authors: Elisabeth Huberle, Hans-Otto Karnath

Published in: Experimental Brain Research | Issue 4/2010

Login to get access

Abstract

Patients with parieto-occipital brain damage may show simultanagnosia, a selective impairment in the simultaneous perception and integration of multiple objects (global perception) with normal recognition of individual objects. Recent findings in patients with simultanagnosia indicate improved global perception at smaller spatial distances between local elements of hierarchical organized complex visual arrays. Global perception thus does not appear to be an all-or-nothing phenomenon but can be modified by the spatial relationship between local elements. The present study aimed to define characteristics of a general principle that accounts for improved global perception of hierarchically organized complex visual arrays in patients with simultanagnosia with respect to the spatial properties of local elements. In detail, we investigated the role of the number and size of the local elements as well as their relationship with each other for the global perception. The findings indicate that global perception increases independently of the size of the global object and depends on the spatial relationship between the local elements and the global object. The results further argue against the possibility of a restriction in the attended or perceived area in simultanagnosia, in the sense that the integration of local elements into a global scene is impaired if a certain spatial “field of view” is exceeded. A possible explanation for these observations might be a shift from global to local saliency in simultanagnosia.
Literature
go back to reference Balint R (1909) Seelenlähmung des Schauens, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25:51–181CrossRef Balint R (1909) Seelenlähmung des Schauens, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25:51–181CrossRef
go back to reference Ben-Av MB, Sagi D (1995) Perceptual grouping by similarity and proximity: experimental results can be predicted by intensity autocorrelations. Vision Res 35:853–866CrossRefPubMed Ben-Av MB, Sagi D (1995) Perceptual grouping by similarity and proximity: experimental results can be predicted by intensity autocorrelations. Vision Res 35:853–866CrossRefPubMed
go back to reference Bhatt R, Carpenter GA et al (2007) Texture segregation by visual cortex: perceptual grouping, attention, and learning. Vision Res 47:3173–3211CrossRefPubMed Bhatt R, Carpenter GA et al (2007) Texture segregation by visual cortex: perceptual grouping, attention, and learning. Vision Res 47:3173–3211CrossRefPubMed
go back to reference Bichot NP, Schall JD (1999) Effects of similarity and history on neural mechanisms of visual selection. Nat Neurosci 2:549–554CrossRefPubMed Bichot NP, Schall JD (1999) Effects of similarity and history on neural mechanisms of visual selection. Nat Neurosci 2:549–554CrossRefPubMed
go back to reference Binet A, Simon T (1905) Methodes nouvelles pour le diagnostic du niveau intellectual des anormaux. Annee Psychol 11:191–337 Binet A, Simon T (1905) Methodes nouvelles pour le diagnostic du niveau intellectual des anormaux. Annee Psychol 11:191–337
go back to reference Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349CrossRefPubMed Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349CrossRefPubMed
go back to reference Constantinidis C, Steinmetz MA (2005) Posterior parietal cortex automatically encodes the location of salient stimuli. J Neurosci 25:233–238CrossRefPubMed Constantinidis C, Steinmetz MA (2005) Posterior parietal cortex automatically encodes the location of salient stimuli. J Neurosci 25:233–238CrossRefPubMed
go back to reference Corbetta M, Miezin FM et al (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226PubMed Corbetta M, Miezin FM et al (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226PubMed
go back to reference Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435PubMed Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435PubMed
go back to reference Dalrymple KA, Buschof WF, Cameron D, Barton JJ, Kingstone A (2010) Simulating simultanagnosia: spatially constricted vision mimics local capture and the global processing deficit. Exp Brain Res 202:445–455CrossRefPubMed Dalrymple KA, Buschof WF, Cameron D, Barton JJ, Kingstone A (2010) Simulating simultanagnosia: spatially constricted vision mimics local capture and the global processing deficit. Exp Brain Res 202:445–455CrossRefPubMed
go back to reference Demeyere N, Humphreys GW (2007) Distributed and focused attention: neuropsychological evidence for separate attentional mechanisms when counting and estimating. J Exp Psychol Hum Percept Perform 33: 1076–1088 Demeyere N, Humphreys GW (2007) Distributed and focused attention: neuropsychological evidence for separate attentional mechanisms when counting and estimating. J Exp Psychol Hum Percept Perform 33: 1076–1088
go back to reference de-Wit LH, Kentridge RW et al (2008) Object-based attention and visual area LO. Neuropsychologia 47:1483–1490CrossRefPubMed de-Wit LH, Kentridge RW et al (2008) Object-based attention and visual area LO. Neuropsychologia 47:1483–1490CrossRefPubMed
go back to reference Di Russo F, Martinez A et al (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13:486–499CrossRefPubMed Di Russo F, Martinez A et al (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13:486–499CrossRefPubMed
go back to reference Duncan J (1984) Perceptual selection based on alphanumeric class: evidence from partial reports. Percept Psychophys 33:533–547 Duncan J (1984) Perceptual selection based on alphanumeric class: evidence from partial reports. Percept Psychophys 33:533–547
go back to reference Field DJ, Hayes A et al (1993) Contour integration by the human visual system: evidence for a local association field. Vision Res 33:173–193CrossRefPubMed Field DJ, Hayes A et al (1993) Contour integration by the human visual system: evidence for a local association field. Vision Res 33:173–193CrossRefPubMed
go back to reference Fox GB, Fan L et al (1998) Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. J Neurotrauma 15:1037–1046CrossRefPubMed Fox GB, Fan L et al (1998) Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. J Neurotrauma 15:1037–1046CrossRefPubMed
go back to reference Friedman-Hill SR, Robertson LC et al (1995) Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269:853–855CrossRefPubMed Friedman-Hill SR, Robertson LC et al (1995) Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science 269:853–855CrossRefPubMed
go back to reference Goldberg ME, Segraves MA (1987) Visuospatial and motor attention in the monkey. Neuropsychologia 25:107–118CrossRefPubMed Goldberg ME, Segraves MA (1987) Visuospatial and motor attention in the monkey. Neuropsychologia 25:107–118CrossRefPubMed
go back to reference Gottlieb JP, Kusunoki M et al (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484CrossRefPubMed Gottlieb JP, Kusunoki M et al (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484CrossRefPubMed
go back to reference Han S (2004) Interactions between proximity and similarity grouping: an event-related brain potential study in humans. Neurosci Lett 367:40–43CrossRefPubMed Han S (2004) Interactions between proximity and similarity grouping: an event-related brain potential study in humans. Neurosci Lett 367:40–43CrossRefPubMed
go back to reference Han S, Humphreys GW (1999) Interactions between perceptual organization based on Gestalt laws and those based on hierarchical processing. Percept Psychophys 61:1287–1298PubMed Han S, Humphreys GW (1999) Interactions between perceptual organization based on Gestalt laws and those based on hierarchical processing. Percept Psychophys 61:1287–1298PubMed
go back to reference Han S, Humphreys GW (2005) Perceptual organization at attended and unattended locations. Sci China C Life Sci 48:106–116PubMed Han S, Humphreys GW (2005) Perceptual organization at attended and unattended locations. Sci China C Life Sci 48:106–116PubMed
go back to reference Han S, Humphreys GW et al (1999a) Parallel and competitive processes in hierarchical analysis: perceptual grouping and encoding of closure. J Exp Psychol Hum Percept Perform 25:1411–1432CrossRefPubMed Han S, Humphreys GW et al (1999a) Parallel and competitive processes in hierarchical analysis: perceptual grouping and encoding of closure. J Exp Psychol Hum Percept Perform 25:1411–1432CrossRefPubMed
go back to reference Han S, Humphreys GW et al (1999b) Uniform connectedness and classical Gestalt principles of perceptual grouping. Percept Psychophys 61:661–674PubMed Han S, Humphreys GW et al (1999b) Uniform connectedness and classical Gestalt principles of perceptual grouping. Percept Psychophys 61:661–674PubMed
go back to reference Han S, Jiang Y et al (2005a) Attentional modulation of perceptual grouping in human visual cortex: functional MRI studies. Hum Brain Mapp 25:424–432CrossRefPubMed Han S, Jiang Y et al (2005a) Attentional modulation of perceptual grouping in human visual cortex: functional MRI studies. Hum Brain Mapp 25:424–432CrossRefPubMed
go back to reference Han S, Jiang Y et al (2005b) Attentional modulation of perceptual grouping in human visual cortex: ERP studies. Hum Brain Mapp 26:199–209CrossRefPubMed Han S, Jiang Y et al (2005b) Attentional modulation of perceptual grouping in human visual cortex: ERP studies. Hum Brain Mapp 26:199–209CrossRefPubMed
go back to reference Huberle E, Karnath HO (2006) Global shape recognition is modulated by the spatial distance of local elements–evidence from simultanagnosia. Neuropsychologia 44:905–911CrossRefPubMed Huberle E, Karnath HO (2006) Global shape recognition is modulated by the spatial distance of local elements–evidence from simultanagnosia. Neuropsychologia 44:905–911CrossRefPubMed
go back to reference Huberle E, Driver J, Karnath HO (2010) Retinal versus physical stimulus size as determinants of visual perception in simultanagnosia. Neuropsychologia 48:1677–1682CrossRefPubMed Huberle E, Driver J, Karnath HO (2010) Retinal versus physical stimulus size as determinants of visual perception in simultanagnosia. Neuropsychologia 48:1677–1682CrossRefPubMed
go back to reference Hughes H, Fendrich R et al (1990) Global versus local processing in the absence of low spatial frequencies. J Cogn Neurosci 2:272–282CrossRef Hughes H, Fendrich R et al (1990) Global versus local processing in the absence of low spatial frequencies. J Cogn Neurosci 2:272–282CrossRef
go back to reference Jensen PH, Sorensen ES et al (1995) Residues in the synuclein consensus motif of the alpha-synuclein fragment, NAC, participate in transglutaminase-catalysed cross-linking to Alzheimer-disease amyloid beta A4 peptide. Biochem J 310:91–94PubMed Jensen PH, Sorensen ES et al (1995) Residues in the synuclein consensus motif of the alpha-synuclein fragment, NAC, participate in transglutaminase-catalysed cross-linking to Alzheimer-disease amyloid beta A4 peptide. Biochem J 310:91–94PubMed
go back to reference Karnath HO, Ferber S et al (2000) The fate of global information in dorsal simultanagnosia. Neurocase 6:295–306CrossRef Karnath HO, Ferber S et al (2000) The fate of global information in dorsal simultanagnosia. Neurocase 6:295–306CrossRef
go back to reference Kim MS, Cave KR (2001) Perceptual grouping via spatial selection in a focused-attention task. Vision Res 41:611–624CrossRefPubMed Kim MS, Cave KR (2001) Perceptual grouping via spatial selection in a focused-attention task. Vision Res 41:611–624CrossRefPubMed
go back to reference Kimchi R, Palmer SE (1982) Form and texture in hierarchically constructed patterns. J Exp Psychol Hum Percept Perform 8:521–535CrossRefPubMed Kimchi R, Palmer SE (1982) Form and texture in hierarchically constructed patterns. J Exp Psychol Hum Percept Perform 8:521–535CrossRefPubMed
go back to reference Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227PubMed Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227PubMed
go back to reference Lamb M, Robertson L (1988) The processing of hierarchical stimuli: effects of retinal locus, locational uncertainty, and stimulus identity. Percept Psychophys 44:172–181PubMed Lamb M, Robertson L (1988) The processing of hierarchical stimuli: effects of retinal locus, locational uncertainty, and stimulus identity. Percept Psychophys 44:172–181PubMed
go back to reference Lee TS, Yang CF et al (2002) Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nat Neurosci 5:589–597CrossRefPubMed Lee TS, Yang CF et al (2002) Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nat Neurosci 5:589–597CrossRefPubMed
go back to reference Li W, Gilbert CD (2002) Global contour saliency and local colinear interactions. J Neurophysiol 88:2846–2856CrossRefPubMed Li W, Gilbert CD (2002) Global contour saliency and local colinear interactions. J Neurophysiol 88:2846–2856CrossRefPubMed
go back to reference Luria AR (1959) Disorders of simultaneous perception in a case of bilateral occipitoparietal brain injury. Brain 82:437–449CrossRefPubMed Luria AR (1959) Disorders of simultaneous perception in a case of bilateral occipitoparietal brain injury. Brain 82:437–449CrossRefPubMed
go back to reference McMains SA, Fehd HM et al (2007) Mechanisms of feature- and space-based attention: response modulation and baseline increases. J Neurophysiol 98:2110–2121CrossRefPubMed McMains SA, Fehd HM et al (2007) Mechanisms of feature- and space-based attention: response modulation and baseline increases. J Neurophysiol 98:2110–2121CrossRefPubMed
go back to reference Mevorach C, Humphreys GW et al (2006a) Effects of saliency, not global dominance, in patients with left parietal damage. Neuropsychologia 44:307–319CrossRefPubMed Mevorach C, Humphreys GW et al (2006a) Effects of saliency, not global dominance, in patients with left parietal damage. Neuropsychologia 44:307–319CrossRefPubMed
go back to reference Mevorach C, Humphreys GW, Shalev L (2006b) Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nat Neurosci 9:740–742CrossRefPubMed Mevorach C, Humphreys GW, Shalev L (2006b) Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nat Neurosci 9:740–742CrossRefPubMed
go back to reference Motter R, Vigo-Pelfrey C et al (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38:643–648CrossRefPubMed Motter R, Vigo-Pelfrey C et al (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38:643–648CrossRefPubMed
go back to reference Mozer M (1991) The perception of multiple objects. MIT Press, Cambridge Mozer M (1991) The perception of multiple objects. MIT Press, Cambridge
go back to reference Mozer M (1998) Computational modeling of spatial attention. Psychology Press, Erlbaum Mozer M (1998) Computational modeling of spatial attention. Psychology Press, Erlbaum
go back to reference Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cognit Psychol 9:353–383CrossRef Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cognit Psychol 9:353–383CrossRef
go back to reference Rafal R (1997) Balint syndrome. Behavioral neurology and neuropsychology. In: Feinberg T, Farah M (ed) McGraw-Hill, New York Rafal R (1997) Balint syndrome. Behavioral neurology and neuropsychology. In: Feinberg T, Farah M (ed) McGraw-Hill, New York
go back to reference Riddoch MJ, Chachlacz M, Mevorach C, Mavritsaki E, Allen H, Humphreys GW (2010) The neural mechanisms of visual selection: the view from neuropsychology. Ann NY Acad Sci 1191:156–181CrossRefPubMed Riddoch MJ, Chachlacz M, Mevorach C, Mavritsaki E, Allen H, Humphreys GW (2010) The neural mechanisms of visual selection: the view from neuropsychology. Ann NY Acad Sci 1191:156–181CrossRefPubMed
go back to reference Rizzo M, Hurtig R (1987) Looking but not seeing: attention, perception, and eye movements in simultanagnosia. Neurology 37:1642–1648PubMed Rizzo M, Hurtig R (1987) Looking but not seeing: attention, perception, and eye movements in simultanagnosia. Neurology 37:1642–1648PubMed
go back to reference Rizzo M, Robin DA (1990) Simultanagnosia: a defect of sustained attention yields insights on visual information processing. Neurology 40:447–455PubMed Rizzo M, Robin DA (1990) Simultanagnosia: a defect of sustained attention yields insights on visual information processing. Neurology 40:447–455PubMed
go back to reference Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259CrossRefPubMed Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259CrossRefPubMed
go back to reference Shomstein S, Behrmann M (2008) Object-based attention: strength of object representation and attentional guidance. Percept Psychophys 70:132–144CrossRefPubMed Shomstein S, Behrmann M (2008) Object-based attention: strength of object representation and attentional guidance. Percept Psychophys 70:132–144CrossRefPubMed
go back to reference Shalev L, Mevorach C, Humphreys GW (2007) Local capture in Balint’s syndrome: effects of grouping and item familiarity. Cogn Neuropsychol 24:115–127CrossRefPubMed Shalev L, Mevorach C, Humphreys GW (2007) Local capture in Balint’s syndrome: effects of grouping and item familiarity. Cogn Neuropsychol 24:115–127CrossRefPubMed
go back to reference Tang-Wai DF, Graff-Radford NR et al (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174PubMed Tang-Wai DF, Graff-Radford NR et al (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174PubMed
go back to reference Von der Malsburg C (1995) Binding in models of perception and brain function. Curr Opin Neurobiol 5:520–526CrossRef Von der Malsburg C (1995) Binding in models of perception and brain function. Curr Opin Neurobiol 5:520–526CrossRef
go back to reference Von der Malsburg C, Willshaw DJ (1981) Cooperativity and brain organization. Trends Neurosci 4:80–83CrossRef Von der Malsburg C, Willshaw DJ (1981) Cooperativity and brain organization. Trends Neurosci 4:80–83CrossRef
go back to reference Wolpert I (1924) Die Simultanagnosie. Z. Gesamte. Neurol Psychiatr 93:397–415 Wolpert I (1924) Die Simultanagnosie. Z. Gesamte. Neurol Psychiatr 93:397–415
Metadata
Title
Saliency modulates global perception in simultanagnosia
Authors
Elisabeth Huberle
Hans-Otto Karnath
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 4/2010
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-010-2328-x

Other articles of this Issue 4/2010

Experimental Brain Research 4/2010 Go to the issue