Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Research

S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS

Authors: Junqing Du, Min Yi, Fang Zhou, Wanjun He, Aifen Yang, Mengsheng Qiu, Hao Huang

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

Studies on the development of central nervous system (CNS) primarily rely on the use of specific molecular markers for different types of neural cells. S100B is widely being used as a specific marker for astrocytes in the CNS. However, the specificity of its expression in astrocyte lineage has not been systematically investigated and thus has remained a lingering issue. In this study, we provide several lines of molecular and genetic evidences that S100B is expressed in both protoplasmic astrocytes and myelinating oligodendrocytes. In the developing spinal cord, S100B is first expressed in the ventral neuroepithelial cells, and later in ALDH1L1+/GS+ astrocytes in the gray matter. Meanwhile, nearly all the S100B+ cells in the white matter are SOX10+/MYRF+ oligodendrocytes. Consistent with this observation, S100B expression is selectively lost in the white matter in Olig2-null mutants in which oligodendrocyte progenitor cells (OPCs) are not produced, and dramatically reduced in Myrf-conditional knockout mutants in which OPCs fail to differentiate. Similar expression patterns of S100B are observed in the developing forebrain. Based on these molecular and genetic studies, we conclude that S100B is not a specific marker for astrocyte lineage; instead, it marks protoplasmic astrocytes in the gray matter and differentiating oligodendrocytes.
Literature
1.
go back to reference Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial-cell specification. Nature. 2010;468(7321):214–22.PubMedCrossRef Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial-cell specification. Nature. 2010;468(7321):214–22.PubMedCrossRef
2.
go back to reference Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res. 2000;25(9-10):1439–51.PubMedCrossRef Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res. 2000;25(9-10):1439–51.PubMedCrossRef
3.
go back to reference Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971;28(2):351–4.PubMedCrossRef Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971;28(2):351–4.PubMedCrossRef
4.
go back to reference Li X, Liu G, Yang L, Li Z, Zhang Z, Xu Z, Cai Y, Du H, Su Z, Wang Z, et al. Decoding cortical glial cell development. Neurosci Bull. 2021;37(4):440–60.PubMedPubMedCentralCrossRef Li X, Liu G, Yang L, Li Z, Zhang Z, Xu Z, Cai Y, Du H, Su Z, Wang Z, et al. Decoding cortical glial cell development. Neurosci Bull. 2021;37(4):440–60.PubMedPubMedCentralCrossRef
5.
go back to reference Boyes BE, Kim SU, Lee V, Sung SC. Immunohistochemical co-localization of S-100b and the glial fibrillary acidic protein in rat brain. Neuroscience. 1986;17(3):857–65.PubMedCrossRef Boyes BE, Kim SU, Lee V, Sung SC. Immunohistochemical co-localization of S-100b and the glial fibrillary acidic protein in rat brain. Neuroscience. 1986;17(3):857–65.PubMedCrossRef
6.
go back to reference Langley OK, Ghandour MS, Gombos G. Immunohistochemistry of cell markers in the central nervous system. In: Lajtha A, editor. Structural elements of the nervous system. Boston: Springer US; 1984. p. 545–611.CrossRef Langley OK, Ghandour MS, Gombos G. Immunohistochemistry of cell markers in the central nervous system. In: Lajtha A, editor. Structural elements of the nervous system. Boston: Springer US; 1984. p. 545–611.CrossRef
7.
go back to reference Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19(6):739–44.PubMedCrossRef Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19(6):739–44.PubMedCrossRef
8.
go back to reference Isobe T, Okuyama T. The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur J Biochem. 1978;89(2):379–88.PubMedCrossRef Isobe T, Okuyama T. The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur J Biochem. 1978;89(2):379–88.PubMedCrossRef
9.
go back to reference Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–68.PubMedCrossRef Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–68.PubMedCrossRef
10.
go back to reference Koppal T, Lam AGM, Guo L, Van Eldik LJ. S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes and microglia. Neurochem Int. 2001;39(5):401–7.PubMedCrossRef Koppal T, Lam AGM, Guo L, Van Eldik LJ. S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes and microglia. Neurochem Int. 2001;39(5):401–7.PubMedCrossRef
11.
go back to reference Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109(6 Pt 1):3063–71.PubMedCrossRef Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109(6 Pt 1):3063–71.PubMedCrossRef
12.
go back to reference Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech. 2003;60(6):614–32.PubMedCrossRef Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech. 2003;60(6):614–32.PubMedCrossRef
13.
go back to reference Van Eldik LJ, Griffin WS. S100 beta expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim Biophys Acta. 1994;1223(3):398–403.PubMedCrossRef Van Eldik LJ, Griffin WS. S100 beta expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim Biophys Acta. 1994;1223(3):398–403.PubMedCrossRef
14.
go back to reference Liu J, Wang H, Zhang L, Xu Y, Deng W, Zhu H, Qin C. S100B transgenic mice develop features of Parkinson’s disease. Arch Med Res. 2011;42(1):1–7.PubMedCrossRef Liu J, Wang H, Zhang L, Xu Y, Deng W, Zhu H, Qin C. S100B transgenic mice develop features of Parkinson’s disease. Arch Med Res. 2011;42(1):1–7.PubMedCrossRef
15.
go back to reference Tanga FY, Raghavendra V, Nutile-McMenemy N, Marks A, Deleo JA. Role of astrocytic S100beta in behavioral hypersensitivity in rodent models of neuropathic pain. Neuroscience. 2006;140(3):1003–10.PubMedCrossRef Tanga FY, Raghavendra V, Nutile-McMenemy N, Marks A, Deleo JA. Role of astrocytic S100beta in behavioral hypersensitivity in rodent models of neuropathic pain. Neuroscience. 2006;140(3):1003–10.PubMedCrossRef
16.
go back to reference Gerlai R, Wojtowicz JM, Marks A, Roder J. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem. 1995;2(1):26–39.PubMedCrossRef Gerlai R, Wojtowicz JM, Marks A, Roder J. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem. 1995;2(1):26–39.PubMedCrossRef
17.
go back to reference Borella A, Sumangali R, Ko J, Whitaker-Azmitia PM. Characterization of social behaviors and oxytocinergic neurons in the S-100β overexpressing mouse model of Down Syndrome. Behav Brain Res. 2003;141(2):229–36.PubMedCrossRef Borella A, Sumangali R, Ko J, Whitaker-Azmitia PM. Characterization of social behaviors and oxytocinergic neurons in the S-100β overexpressing mouse model of Down Syndrome. Behav Brain Res. 2003;141(2):229–36.PubMedCrossRef
18.
go back to reference Dyck RH, Bogoch II, Marks A, Melvin NR, Teskey GC. Enhanced epileptogenesis in S100B knockout mice. Brain Res Mol Brain Res. 2002;106(1-2):22–9.PubMedCrossRef Dyck RH, Bogoch II, Marks A, Melvin NR, Teskey GC. Enhanced epileptogenesis in S100B knockout mice. Brain Res Mol Brain Res. 2002;106(1-2):22–9.PubMedCrossRef
19.
go back to reference Wu H, Brown EV, Acharya NK, Appelt DM, Marks A, Nagele RG, Venkataraman V. Age-dependent increase of blood-brain barrier permeability and neuron-binding autoantibodies in S100B knockout mice. Brain Res. 2016;1637:154–67.PubMedCrossRef Wu H, Brown EV, Acharya NK, Appelt DM, Marks A, Nagele RG, Venkataraman V. Age-dependent increase of blood-brain barrier permeability and neuron-binding autoantibodies in S100B knockout mice. Brain Res. 2016;1637:154–67.PubMedCrossRef
20.
go back to reference Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA. 2002;99(6):4037–42.PubMedPubMedCentralCrossRef Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA. 2002;99(6):4037–42.PubMedPubMedCentralCrossRef
21.
go back to reference Chang MS, Ariah LM, Marks A, Azmitia EC. Chronic gliosis induced by loss of S-100B: knockout mice have enhanced GFAP-immunoreactivity but blunted response to a serotonin challenge. Brain Res. 2005;1031(1):1–9.PubMedCrossRef Chang MS, Ariah LM, Marks A, Azmitia EC. Chronic gliosis induced by loss of S-100B: knockout mice have enhanced GFAP-immunoreactivity but blunted response to a serotonin challenge. Brain Res. 2005;1031(1):1–9.PubMedCrossRef
22.
go back to reference Ludwin SK, Kosek JC, Eng LF. The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol. 1976;165(2):197–207.PubMedCrossRef Ludwin SK, Kosek JC, Eng LF. The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol. 1976;165(2):197–207.PubMedCrossRef
23.
go back to reference Liu Y, Wu Y, Lee JC, Xue H, Pevny LH, Kaprielian Z, Rao MS. Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia. 2002;40(1):25–43.PubMedCrossRef Liu Y, Wu Y, Lee JC, Xue H, Pevny LH, Kaprielian Z, Rao MS. Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia. 2002;40(1):25–43.PubMedCrossRef
24.
go back to reference Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C. Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia. 2005;51(2):81–97.PubMedCrossRef Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C. Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia. 2005;51(2):81–97.PubMedCrossRef
25.
go back to reference Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J. Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci. 2004;27(4):453–65.PubMedCrossRef Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J. Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci. 2004;27(4):453–65.PubMedCrossRef
26.
go back to reference Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci. 2007;8:2.PubMedPubMedCentralCrossRef Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci. 2007;8:2.PubMedPubMedCentralCrossRef
27.
go back to reference Vives V, Alonso G, Solal AC, Joubert D, Legraverend C. Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol. 2003;457(4):404–19.PubMedCrossRef Vives V, Alonso G, Solal AC, Joubert D, Legraverend C. Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol. 2003;457(4):404–19.PubMedCrossRef
28.
go back to reference Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia. 2011;59(2):200–7.PubMedPubMedCentralCrossRef Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia. 2011;59(2):200–7.PubMedPubMedCentralCrossRef
29.
go back to reference Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–78.PubMedPubMedCentralCrossRef Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–78.PubMedPubMedCentralCrossRef
30.
go back to reference Tardy M, Fages C, Kheli M, Rolland B. Glutamine synthetase, a marker of an astroglial subpopulation in mouse brain. In: Chatel M, Darcel F, Pecker J, editors. Brain oncology biology, diagnosis and therapy: an international meeting on brain oncology, Rennes, France, September 4–5, 1986, held under the auspices of the Ministry of National Education, the University of Rennes and the Regional Hospital Rennes. Dordrecht: Springer Netherlands; 1987. p. 61–5.CrossRef Tardy M, Fages C, Kheli M, Rolland B. Glutamine synthetase, a marker of an astroglial subpopulation in mouse brain. In: Chatel M, Darcel F, Pecker J, editors. Brain oncology biology, diagnosis and therapy: an international meeting on brain oncology, Rennes, France, September 4–5, 1986, held under the auspices of the Ministry of National Education, the University of Rennes and the Regional Hospital Rennes. Dordrecht: Springer Netherlands; 1987. p. 61–5.CrossRef
31.
go back to reference Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 2002;16(2):165–70.PubMedPubMedCentralCrossRef Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 2002;16(2):165–70.PubMedPubMedCentralCrossRef
32.
go back to reference Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell. 2009;138(1):172–85.PubMedPubMedCentralCrossRef Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell. 2009;138(1):172–85.PubMedPubMedCentralCrossRef
33.
go back to reference Kirmani BF, Jacobowitz DM, Namboodiri MA. Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Brain Res Dev Brain Res. 2003;140(1):105–15.PubMedCrossRef Kirmani BF, Jacobowitz DM, Namboodiri MA. Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Brain Res Dev Brain Res. 2003;140(1):105–15.PubMedCrossRef
34.
go back to reference Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol. 2002;12(13):1157–63.PubMedCrossRef Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol. 2002;12(13):1157–63.PubMedCrossRef
35.
go back to reference Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell. 2002;109(1):75–86.PubMedCrossRef Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell. 2002;109(1):75–86.PubMedCrossRef
36.
go back to reference Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109(1):61–73.PubMedCrossRef Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109(1):61–73.PubMedCrossRef
37.
go back to reference Brozzi F, Arcuri C, Giambanco I, Donato R. S100B protein regulates astrocyte shape and migration via interaction with src kinase: implications for astrocyte development, activation, and tumor growth. J Biol Chem. 2009;284(13):8797–811.PubMedPubMedCentralCrossRef Brozzi F, Arcuri C, Giambanco I, Donato R. S100B protein regulates astrocyte shape and migration via interaction with src kinase: implications for astrocyte development, activation, and tumor growth. J Biol Chem. 2009;284(13):8797–811.PubMedPubMedCentralCrossRef
38.
go back to reference Gonzalez-Martinez T, Perez-Pinera P, Diaz-Esnal B, Vega JA. S-100 proteins in the human peripheral nervous system. Microsc Res Tech. 2003;60(6):633–8.PubMedCrossRef Gonzalez-Martinez T, Perez-Pinera P, Diaz-Esnal B, Vega JA. S-100 proteins in the human peripheral nervous system. Microsc Res Tech. 2003;60(6):633–8.PubMedCrossRef
39.
go back to reference Ichikawa H, Jacobowitz DM, Sugimoto T. S100 protein-immunoreactive primary sensory neurons in the trigeminal and dorsal root ganglia of the rat. Brain Res. 1997;748(1-2):253–7.PubMedCrossRef Ichikawa H, Jacobowitz DM, Sugimoto T. S100 protein-immunoreactive primary sensory neurons in the trigeminal and dorsal root ganglia of the rat. Brain Res. 1997;748(1-2):253–7.PubMedCrossRef
40.
go back to reference Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:d1356–68.PubMed Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:d1356–68.PubMed
41.
go back to reference Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta. 1999;1450(3):191–231.PubMedCrossRef Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta. 1999;1450(3):191–231.PubMedCrossRef
42.
go back to reference Huang H, Teng P, Du J, Meng J, Hu X, Tang T, Zhang Z, Qi YB, Qiu M. Interactive repression of MYRF self-cleavage and activity in oligodendrocyte differentiation by TMEM98 protein. J Neurosci. 2018;38(46):9829–39.PubMedPubMedCentralCrossRef Huang H, Teng P, Du J, Meng J, Hu X, Tang T, Zhang Z, Qi YB, Qiu M. Interactive repression of MYRF self-cleavage and activity in oligodendrocyte differentiation by TMEM98 protein. J Neurosci. 2018;38(46):9829–39.PubMedPubMedCentralCrossRef
Metadata
Title
S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS
Authors
Junqing Du
Min Yi
Fang Zhou
Wanjun He
Aifen Yang
Mengsheng Qiu
Hao Huang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-021-00865-9

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue