Skip to main content
Top
Published in: BMC Physiology 1/2016

Open Access 01-12-2016 | Research article

Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca2+ sensitivity but not on Ca2+ sparks or BK channels

Authors: Gayathri Krishnamoorthy, Katrin Reimann, Philine Wangemann

Published in: BMC Physiology | Issue 1/2016

Login to get access

Abstract

Background

In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels.

Methods

SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed.

Results

Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O.

Conclusions

The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
Literature
2.
go back to reference Wing KG, Harris JD, Stover A, Brouillette JH. Effects of changes in arterial oxygen and carbon dioxide upon cochlear microphonics. J Comp Physiol Psychol. 1953;46(5):352–7.CrossRefPubMed Wing KG, Harris JD, Stover A, Brouillette JH. Effects of changes in arterial oxygen and carbon dioxide upon cochlear microphonics. J Comp Physiol Psychol. 1953;46(5):352–7.CrossRefPubMed
3.
go back to reference Heigl F, Hettich R, Suckfuell M, Luebbers CW, Osterkorn D, Osterkorn K, Canis M. Fibrinogen/LDL apheresis as successful second-line treatment of sudden hearing loss: a retrospective study on 217 patients. Atheroscler Suppl. 2009;10(5):95–101.CrossRefPubMed Heigl F, Hettich R, Suckfuell M, Luebbers CW, Osterkorn D, Osterkorn K, Canis M. Fibrinogen/LDL apheresis as successful second-line treatment of sudden hearing loss: a retrospective study on 217 patients. Atheroscler Suppl. 2009;10(5):95–101.CrossRefPubMed
4.
go back to reference Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu X, Nuttall AL. Disorders of cochlear blood flow. Brain Res Brain Res Rev. 2003;43(1):17–28.CrossRefPubMed Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu X, Nuttall AL. Disorders of cochlear blood flow. Brain Res Brain Res Rev. 2003;43(1):17–28.CrossRefPubMed
5.
go back to reference Nishimura T, Nario K, Hosoi H. Effects of intravenous administration of prostaglandin E1 and lipo-prostaglandin E1 on cochlear blood flow in guinea pigs. Eur Arch Otorhinolaryngol. 2002;259(5):253–6.CrossRefPubMed Nishimura T, Nario K, Hosoi H. Effects of intravenous administration of prostaglandin E1 and lipo-prostaglandin E1 on cochlear blood flow in guinea pigs. Eur Arch Otorhinolaryngol. 2002;259(5):253–6.CrossRefPubMed
6.
go back to reference Scherer EQ, Yang J, Canis M, Reimann K, Ivanov K, Diehl CD, Backx PH, Wier WG, Strieth S, Wangemann P, Voigtlaender-Bolz J, Lidington D, Bolz SS. Tumor necrosis factor-alpha enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke. 2010;41(11):2618–24.CrossRefPubMedPubMedCentral Scherer EQ, Yang J, Canis M, Reimann K, Ivanov K, Diehl CD, Backx PH, Wier WG, Strieth S, Wangemann P, Voigtlaender-Bolz J, Lidington D, Bolz SS. Tumor necrosis factor-alpha enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke. 2010;41(11):2618–24.CrossRefPubMedPubMedCentral
7.
go back to reference Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S. TNF-alpha inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol. 2013;52(8):545–52.CrossRefPubMed Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S. TNF-alpha inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol. 2013;52(8):545–52.CrossRefPubMed
8.
go back to reference Ihler F, Bertlich M, Sharaf K, Strieth S, Strupp M, Canis M. Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in guinea pigs in vivo. PLoS One. 2012;7(6):e39086.CrossRefPubMedPubMedCentral Ihler F, Bertlich M, Sharaf K, Strieth S, Strupp M, Canis M. Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in guinea pigs in vivo. PLoS One. 2012;7(6):e39086.CrossRefPubMedPubMedCentral
9.
go back to reference Gruber DD, Dang H, Shimozono M, Scofield MA, Wangemann P. Alpha1A-adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hear Res. 1998;119(1–2):113–24.CrossRefPubMed Gruber DD, Dang H, Shimozono M, Scofield MA, Wangemann P. Alpha1A-adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hear Res. 1998;119(1–2):113–24.CrossRefPubMed
10.
go back to reference Wangemann P, Gruber DD. The isolated in vitro perfused spiral modiolar artery: pressure dependence of vasoconstriction. Hear Res. 1998;115(1–2):113–8.CrossRefPubMed Wangemann P, Gruber DD. The isolated in vitro perfused spiral modiolar artery: pressure dependence of vasoconstriction. Hear Res. 1998;115(1–2):113–8.CrossRefPubMed
11.
go back to reference Wangemann P, Cohn ES, Gruber DD, Gratton MA. Ca2+ -dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro. Hear Res. 1998;118(1-2):90–100.CrossRefPubMed Wangemann P, Cohn ES, Gruber DD, Gratton MA. Ca2+ -dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro. Hear Res. 1998;118(1-2):90–100.CrossRefPubMed
12.
go back to reference Reimann K, Krishnamoorthy G, Wier WG, Wangemann P. Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea. PLoS One. 2011;6(9):e25659.CrossRefPubMedPubMedCentral Reimann K, Krishnamoorthy G, Wier WG, Wangemann P. Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea. PLoS One. 2011;6(9):e25659.CrossRefPubMedPubMedCentral
13.
go back to reference Wu T, Dai M, Shi XR, Jiang ZG, Nuttall AL. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter. Am J Physiol Heart Circ Physiol. 2011;301(1):H69–78.CrossRefPubMedPubMedCentral Wu T, Dai M, Shi XR, Jiang ZG, Nuttall AL. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter. Am J Physiol Heart Circ Physiol. 2011;301(1):H69–78.CrossRefPubMedPubMedCentral
14.
go back to reference Dai M, Yang Y, Shi X. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am J Physiol Heart Circ Physiol. 2011;301(4):H1248–54.CrossRefPubMedPubMedCentral Dai M, Yang Y, Shi X. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am J Physiol Heart Circ Physiol. 2011;301(4):H1248–54.CrossRefPubMedPubMedCentral
15.
go back to reference Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995;270(5236):633–7.CrossRefPubMed Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995;270(5236):633–7.CrossRefPubMed
17.
go back to reference Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Rubart M, Stevenson AS, Lederer WJ, et al. Ca2+ channels, ryanodine receptors and Ca2+-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164(4):577–87.CrossRefPubMed Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Rubart M, Stevenson AS, Lederer WJ, et al. Ca2+ channels, ryanodine receptors and Ca2+-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164(4):577–87.CrossRefPubMed
18.
go back to reference Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+ -dependent K+ channels. J Physiol. 1998;508(Pt 1):211–21.CrossRefPubMedPubMedCentral Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+ -dependent K+ channels. J Physiol. 1998;508(Pt 1):211–21.CrossRefPubMedPubMedCentral
19.
go back to reference Perez GJ, Bonev AD, Patlak JB, Nelson MT. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol. 1999;113(2):229–38.CrossRefPubMedPubMedCentral Perez GJ, Bonev AD, Patlak JB, Nelson MT. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol. 1999;113(2):229–38.CrossRefPubMedPubMedCentral
20.
go back to reference Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268(4 Pt 1):C799–822.PubMed Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268(4 Pt 1):C799–822.PubMed
21.
go back to reference Krishnamoorthy G, Sonkusare SK, Heppner TJ, Nelson MT. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol. 2014;306(7):H981–8.CrossRefPubMedPubMedCentral Krishnamoorthy G, Sonkusare SK, Heppner TJ, Nelson MT. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol. 2014;306(7):H981–8.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Reimann K, Krishnamoorthy G, Wangemann P. NOS inhibition enhances myogenic tone by increasing rho-kinase mediated Ca2+ sensitivity in the male but not the female gerbil spiral modiolar artery. PLoS One. 2013;8(1):e53655.CrossRefPubMedPubMedCentral Reimann K, Krishnamoorthy G, Wangemann P. NOS inhibition enhances myogenic tone by increasing rho-kinase mediated Ca2+ sensitivity in the male but not the female gerbil spiral modiolar artery. PLoS One. 2013;8(1):e53655.CrossRefPubMedPubMedCentral
24.
go back to reference Kur J, Bankhead P, Scholfield CN, Curtis TM, McGeown JG. Ca2+ sparks promote myogenic tone in retinal arterioles. Br J Pharmacol. 2013;168(7):1675–86.CrossRefPubMedPubMedCentral Kur J, Bankhead P, Scholfield CN, Curtis TM, McGeown JG. Ca2+ sparks promote myogenic tone in retinal arterioles. Br J Pharmacol. 2013;168(7):1675–86.CrossRefPubMedPubMedCentral
26.
go back to reference Buck E, Zimanyi I, Abramson JJ, Pessah IN. Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J Biol Chem. 1992;267(33):23560–7.PubMed Buck E, Zimanyi I, Abramson JJ, Pessah IN. Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J Biol Chem. 1992;267(33):23560–7.PubMed
27.
go back to reference Scherer EQ, Wangemann P. ETA receptors in the gerbil spiral modiolar artery. Adv Otorhinolaryngol. 2002;59:58–65.PubMed Scherer EQ, Wangemann P. ETA receptors in the gerbil spiral modiolar artery. Adv Otorhinolaryngol. 2002;59:58–65.PubMed
28.
go back to reference Jaggar JH. Intravascular pressure regulates local and global Ca2+ signaling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol. 2001;281(2):C439–48.PubMed Jaggar JH. Intravascular pressure regulates local and global Ca2+ signaling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol. 2001;281(2):C439–48.PubMed
29.
go back to reference Miriel VA, Mauban JR, Blaustein MP, Wier WG. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation. J Physiol. 1999;518(Pt 3):815–24.CrossRefPubMedPubMedCentral Miriel VA, Mauban JR, Blaustein MP, Wier WG. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation. J Physiol. 1999;518(Pt 3):815–24.CrossRefPubMedPubMedCentral
31.
go back to reference Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407(6806):870–6.CrossRefPubMed Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407(6806):870–6.CrossRefPubMed
32.
go back to reference Evanson KW, Bannister JP, Leo MD, Jaggar JH. LRRC26 is a functional BK channel auxiliary gamma subunit in arterial smooth muscle cells. Circ Res. 2014;115(4):423–31.CrossRefPubMedPubMedCentral Evanson KW, Bannister JP, Leo MD, Jaggar JH. LRRC26 is a functional BK channel auxiliary gamma subunit in arterial smooth muscle cells. Circ Res. 2014;115(4):423–31.CrossRefPubMedPubMedCentral
33.
go back to reference Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res. 2001;89(11):1051–7.CrossRefPubMed Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res. 2001;89(11):1051–7.CrossRefPubMed
34.
go back to reference Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol. 2012;590(8):1849–69.CrossRefPubMedPubMedCentral Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol. 2012;590(8):1849–69.CrossRefPubMedPubMedCentral
35.
go back to reference Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79(2):387–423.PubMed Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79(2):387–423.PubMed
36.
go back to reference Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res. 2008;77(1):8–18.PubMed Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res. 2008;77(1):8–18.PubMed
37.
go back to reference Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC. Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol. 2009;587(Pt 11):2537–53.CrossRefPubMedPubMedCentral Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC. Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol. 2009;587(Pt 11):2537–53.CrossRefPubMedPubMedCentral
38.
go back to reference Moreno-Dominguez A, Colinas O, El-Yazbi A, Walsh EJ, Hill MA, Walsh MP, Cole WC. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries. J Physiol. 2013;591(5):1235–50.CrossRefPubMed Moreno-Dominguez A, Colinas O, El-Yazbi A, Walsh EJ, Hill MA, Walsh MP, Cole WC. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries. J Physiol. 2013;591(5):1235–50.CrossRefPubMed
39.
go back to reference Sward K, Mita M, Wilson DP, Deng JT, Susnjar M, Walsh MP. The role of RhoA and Rho-associated kinase in vascular smooth muscle contraction. Curr Hypertens Rep. 2003;5(1):66–72.CrossRefPubMed Sward K, Mita M, Wilson DP, Deng JT, Susnjar M, Walsh MP. The role of RhoA and Rho-associated kinase in vascular smooth muscle contraction. Curr Hypertens Rep. 2003;5(1):66–72.CrossRefPubMed
40.
go back to reference Lagaud G, Gaudreault N, Moore ED, Van Breemen C, Laher I. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physiol Heart Circ Physiol. 2002;283(6):H2187–95.CrossRefPubMed Lagaud G, Gaudreault N, Moore ED, Van Breemen C, Laher I. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physiol Heart Circ Physiol. 2002;283(6):H2187–95.CrossRefPubMed
41.
go back to reference Ito K, Shimomura E, Iwanaga T, Shiraishi M, Shindo K, Nakamura J, Nagumo H, Seto M, Sasaki Y, Takuwa Y. Essential role of rho kinase in the Ca2+ sensitization of prostaglandin F2α-induced contraction of rabbit aortae. J Physiol. 2003;546(Pt 3):823–36.CrossRefPubMed Ito K, Shimomura E, Iwanaga T, Shiraishi M, Shindo K, Nakamura J, Nagumo H, Seto M, Sasaki Y, Takuwa Y. Essential role of rho kinase in the Ca2+ sensitization of prostaglandin F-induced contraction of rabbit aortae. J Physiol. 2003;546(Pt 3):823–36.CrossRefPubMed
42.
go back to reference Baek I, Jeon SB, Kim J, Seok YM, Song MJ, Chae SC, Jun JE, Park WH, Kim IK. A role for Rho-kinase in Ca-independent contractions induced by phorbol-12,13-dibutyrate. Clin Exp Pharmacol Physiol. 2009;36(3):256–61.CrossRefPubMed Baek I, Jeon SB, Kim J, Seok YM, Song MJ, Chae SC, Jun JE, Park WH, Kim IK. A role for Rho-kinase in Ca-independent contractions induced by phorbol-12,13-dibutyrate. Clin Exp Pharmacol Physiol. 2009;36(3):256–61.CrossRefPubMed
43.
go back to reference El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC. Pressure-dependent contribution of Rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol. 2010;588(Pt 10):1747–62.CrossRefPubMedPubMedCentral El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC. Pressure-dependent contribution of Rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol. 2010;588(Pt 10):1747–62.CrossRefPubMedPubMedCentral
44.
go back to reference Gleich O, Strutz J. The Mongolian gerbil as a model for the analysis of peripheral and central age-dependent hearing loss. In: Naz S, editor. Hearing loss. Rijeka, Croatia: InTech. 2012. doi:10.5772/33569. Gleich O, Strutz J. The Mongolian gerbil as a model for the analysis of peripheral and central age-dependent hearing loss. In: Naz S, editor. Hearing loss. Rijeka, Croatia: InTech. 2012. doi:10.​5772/​33569.
Metadata
Title
Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca2+ sensitivity but not on Ca2+ sparks or BK channels
Authors
Gayathri Krishnamoorthy
Katrin Reimann
Philine Wangemann
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Physiology / Issue 1/2016
Electronic ISSN: 1472-6793
DOI
https://doi.org/10.1186/s12899-016-0026-z

Other articles of this Issue 1/2016

BMC Physiology 1/2016 Go to the issue