Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 9/2019

01-09-2019 | Retinal Disorders

Running pattern of choroidal vessel in en face OCT images determined by machine learning–based quantitative method

Authors: Hideki Shiihara, Taiji Sakamoto, Hiroto Terasaki, Naoko Kakiuchi, Yuki Shinohara, Masatoshi Tomita, Shozo Sonoda

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 9/2019

Login to get access

Abstract

Purpose

To evaluate the new method to quantitate the running pattern of the vessels in Haller’s layer in en face optical coherence tomographic (OCT) images using the new algorithm.

Methods

A retrospective and cross-sectional study. The en face image of top 25% slab of Haller’s layer was analyzed. The vascular area in these images was calculated after binarization. Then, the vessels were thinned, and the total length of the vessels and the mean vessel diameter were calculated. Based on the angle of vessel running, “natural oblique vessel” was defined. The ratio of the natural oblique vessel to the whole vessels was defined as the “symmetry index”. To examine the reproducibility of the software, the images obtained on two different examination dates of the same subject (25 eyes of 25 healthy subjects) were analyzed. Also, to compare the symmetry index and subjective evaluations, 180 eyes and 180 healthy subjects were analyzed. The subjective evaluations classified the images into 3 groups, the Symmetrical, Semi-symmetrical, and Asymmetrical types. Symmetry index was compared in each group.

Results

The inter-measurement correlation coefficient (ICC) of the vessel area, vessel length, and vessel diameter were 0.955, 0.934, and 0.954, respectively. The ICC of the symmetry index was 0.926. The symmetry index of the Symmetrical type was 60.4 ± 7.2%, that of the Semi-symmetry type was 56.2 ± 4.6%, and that of the Asymmetry type was 52.6 ± 5.2%.

Conclusions

The present algorithm can analyze vessels in Haller’s layer of the en face images of choroid in an objective manner with good repeatability.
Literature
1.
go back to reference Lutty GA, Cao J, McLeod DS (1997) Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol 151:707PubMedPubMedCentral Lutty GA, Cao J, McLeod DS (1997) Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol 151:707PubMedPubMedCentral
2.
go back to reference Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473CrossRef Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473CrossRef
3.
go back to reference Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, Wong TY, Aung T (2010) Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res 29:19–29CrossRef Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, Wong TY, Aung T (2010) Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res 29:19–29CrossRef
4.
go back to reference Saito M, Kano M, Itagaki K, Ise S, Imaizumi K, Sekiryu T (2016) Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injection. Jpn J Ophthalmol 60:35–41CrossRefPubMed Saito M, Kano M, Itagaki K, Ise S, Imaizumi K, Sekiryu T (2016) Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injection. Jpn J Ophthalmol 60:35–41CrossRefPubMed
5.
go back to reference Yoshikawa M, Akagi T, Nakanishi H, Ikeda HO, Morooka S, Yamada H, Hasegawa T, Iida Y, Yoshimura N (2017) Longitudinal change in choroidal thickness after trabeculectomy in primary open-angle glaucoma patients. Jpn J Ophthalmol 61:105–112CrossRefPubMed Yoshikawa M, Akagi T, Nakanishi H, Ikeda HO, Morooka S, Yamada H, Hasegawa T, Iida Y, Yoshimura N (2017) Longitudinal change in choroidal thickness after trabeculectomy in primary open-angle glaucoma patients. Jpn J Ophthalmol 61:105–112CrossRefPubMed
6.
go back to reference Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB (2015) Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol 160:1243–1254. e1242CrossRef Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB (2015) Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol 160:1243–1254. e1242CrossRef
7.
go back to reference Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36:499–516CrossRef Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36:499–516CrossRef
8.
go back to reference Savastano MC, Dansingani KK, Rispoli M, Virgili G, Savastano A, Freund KB, Lumbroso B (2017) Classification of haller vessel arrangements in acute and chronic central serous chorioretinopathy imaged with en face optical coherence tomography. Retina 38:1211–1215CrossRef Savastano MC, Dansingani KK, Rispoli M, Virgili G, Savastano A, Freund KB, Lumbroso B (2017) Classification of haller vessel arrangements in acute and chronic central serous chorioretinopathy imaged with en face optical coherence tomography. Retina 38:1211–1215CrossRef
9.
go back to reference Savastano MC, Rispoli M, Savastano A, Lumbroso B (2015) En face optical coherence tomography for visualization of the choroid. Ophthalmic Surg Lasers Imaging Retina 46:561–565CrossRefPubMed Savastano MC, Rispoli M, Savastano A, Lumbroso B (2015) En face optical coherence tomography for visualization of the choroid. Ophthalmic Surg Lasers Imaging Retina 46:561–565CrossRefPubMed
10.
go back to reference Hiroe T, Kishi S (2018) Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retin 2:152–161CrossRef Hiroe T, Kishi S (2018) Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retin 2:152–161CrossRef
11.
go back to reference Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRef Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRef
12.
go back to reference Esmaeelpour M, Považay B, Hermann B, Hofer B, Kajic V, Kapoor K, Sheen NJ, North RV, Drexler W (2010) Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci 51:5260–5266CrossRefPubMed Esmaeelpour M, Považay B, Hermann B, Hofer B, Kajic V, Kapoor K, Sheen NJ, North RV, Drexler W (2010) Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci 51:5260–5266CrossRefPubMed
13.
go back to reference Copete S, Flores-Moreno I, Montero JA, Duker JS, Ruiz-Moreno JM (2014) Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98:334–338CrossRef Copete S, Flores-Moreno I, Montero JA, Duker JS, Ruiz-Moreno JM (2014) Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98:334–338CrossRef
14.
go back to reference Adhi M, Liu JJ, Qavi AH, Grulkowski I, Lu CD, Mohler KJ, Ferrara D, Kraus MF, Baumal CR, Witkin AJ (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157:1272–1281. e1271CrossRef Adhi M, Liu JJ, Qavi AH, Grulkowski I, Lu CD, Mohler KJ, Ferrara D, Kraus MF, Baumal CR, Witkin AJ (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157:1272–1281. e1271CrossRef
15.
go back to reference Matsuo Y, Sakamoto T, Yamashita T, Tomita M, Shirasawa M, Terasaki H (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54:7630–7636CrossRef Matsuo Y, Sakamoto T, Yamashita T, Tomita M, Shirasawa M, Terasaki H (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54:7630–7636CrossRef
16.
go back to reference Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol 135:1197–1204CrossRefPubMedPubMedCentral Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol 135:1197–1204CrossRefPubMedPubMedCentral
17.
go back to reference Spaide RF (2017) Choriocapillaris signal voids in maternally inherited diabetes and deafness and in pseudoxanthoma elasticum. Retina 37:2008–2014CrossRef Spaide RF (2017) Choriocapillaris signal voids in maternally inherited diabetes and deafness and in pseudoxanthoma elasticum. Retina 37:2008–2014CrossRef
18.
go back to reference Sohrab M, Wu K, Fawzi AA (2012) A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS One 7:e48631CrossRefPubMedPubMedCentral Sohrab M, Wu K, Fawzi AA (2012) A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS One 7:e48631CrossRefPubMedPubMedCentral
19.
go back to reference Shiihara H, Sonoda S, Terasaki H, Kakiuchi N, Shinohara Y, Tomita M, Sakamoto T (2018) Automated segmentation of en face choroidal images obtained by optical coherent tomography by machine learning. Jpn J Ophthalmol 62:643–651CrossRefPubMed Shiihara H, Sonoda S, Terasaki H, Kakiuchi N, Shinohara Y, Tomita M, Sakamoto T (2018) Automated segmentation of en face choroidal images obtained by optical coherent tomography by machine learning. Jpn J Ophthalmol 62:643–651CrossRefPubMed
20.
go back to reference Stroustrup B (2013) The C++ programming language, 4th edn. Pearson Education India, London Stroustrup B (2013) The C++ programming language, 4th edn. Pearson Education India, London
21.
go back to reference Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graphics gems: 474–485 Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graphics gems: 474–485
22.
go back to reference Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. In Proc IEEE CVPR 60–65 Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. In Proc IEEE CVPR 60–65
23.
go back to reference Otsu N (1979) A threshold selection method from gray-level histograms. Man Cybern 9:62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. Man Cybern 9:62–66CrossRef
24.
go back to reference Zhang T, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27:236–239CrossRef Zhang T, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27:236–239CrossRef
25.
go back to reference Mori K, Gehlbach PL, Yoneya S, Shimizu K (2004) Asymmetry of choroidal venous vascular patterns in the human eye. Ophthalmology 111:507–512CrossRefPubMed Mori K, Gehlbach PL, Yoneya S, Shimizu K (2004) Asymmetry of choroidal venous vascular patterns in the human eye. Ophthalmology 111:507–512CrossRefPubMed
26.
27.
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMed Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMed
28.
go back to reference Kuroda Y, Ooto S, Yamashiro K, Oishi A, Nakanishi H, Tamura H, Ueda-Arakawa N, Yoshimura N (2016) Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol 169:199–207CrossRefPubMed Kuroda Y, Ooto S, Yamashiro K, Oishi A, Nakanishi H, Tamura H, Ueda-Arakawa N, Yoshimura N (2016) Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol 169:199–207CrossRefPubMed
29.
go back to reference Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Kumase F, Shiode Y, Doi S, Hirano M, Toshima S, Hosogi M (2016) Factors affecting choroidal vascular density in normal eyes: quantification using en face swept-source optical coherence tomography. Am J Ophthalmol 170:1–9CrossRefPubMed Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Kumase F, Shiode Y, Doi S, Hirano M, Toshima S, Hosogi M (2016) Factors affecting choroidal vascular density in normal eyes: quantification using en face swept-source optical coherence tomography. Am J Ophthalmol 170:1–9CrossRefPubMed
30.
go back to reference Maruyama-Inoue M, Yamane S, Satoh H, Sato S, Kadonosono K (2017) Choroidal angioarchitecture according to ultra-widefield indocyanine green angiography in age-related macular degeneration. Journal of VitreoRetinal Diseases 1:365–371CrossRef Maruyama-Inoue M, Yamane S, Satoh H, Sato S, Kadonosono K (2017) Choroidal angioarchitecture according to ultra-widefield indocyanine green angiography in age-related macular degeneration. Journal of VitreoRetinal Diseases 1:365–371CrossRef
31.
go back to reference Borrelli E, Sarraf D, Freund KB, Sadda SR (2018) OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res 67:30–55CrossRefPubMed Borrelli E, Sarraf D, Freund KB, Sadda SR (2018) OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res 67:30–55CrossRefPubMed
32.
go back to reference Mennel S, Hausmann N, Meyer CH, Peter S (2005) Photodynamic therapy and indocyanine green guided feeder vessel photocoagulation of choroidal neovascularization secondary to choroid rupture after blunt trauma. Graefes Arch Clin Exp Ophthalmol 243:68–71CrossRefPubMed Mennel S, Hausmann N, Meyer CH, Peter S (2005) Photodynamic therapy and indocyanine green guided feeder vessel photocoagulation of choroidal neovascularization secondary to choroid rupture after blunt trauma. Graefes Arch Clin Exp Ophthalmol 243:68–71CrossRefPubMed
Metadata
Title
Running pattern of choroidal vessel in en face OCT images determined by machine learning–based quantitative method
Authors
Hideki Shiihara
Taiji Sakamoto
Hiroto Terasaki
Naoko Kakiuchi
Yuki Shinohara
Masatoshi Tomita
Shozo Sonoda
Publication date
01-09-2019
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 9/2019
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-019-04399-8

Other articles of this Issue 9/2019

Graefe's Archive for Clinical and Experimental Ophthalmology 9/2019 Go to the issue