Skip to main content
Top
Published in: Trials 1/2022

Open Access 01-12-2022 | Rubella | Study protocol

Study protocol for a phase 1/2, single-centre, double-blind, double-dummy, randomized, active-controlled, age de-escalation trial to assess the safety, tolerability and immunogenicity of a measles and rubella vaccine delivered by a microneedle patch in healthy adults (18 to 40 years), measles and rubella vaccine-primed toddlers (15 to 18 months) and measles and rubella vaccine-naïve infants (9 to 10 months) in The Gambia [Measles and Rubella Vaccine Microneedle Patch Phase 1/2 Age De-escalation Trial]

Authors: Ikechukwu Adigweme, Edem Akpalu, Mohammed Yisa, Simon Donkor, Lamin B. Jarju, Baba Danso, Anthony Mendy, David Jeffries, Abdoulie Njie, Andrew Bruce, Michael Royals, James L. Goodson, Mark R. Prausnitz, Devin McAllister, Paul A. Rota, Sebastien Henry, Ed Clarke

Published in: Trials | Issue 1/2022

Login to get access

Abstract

Background

New strategies to increase measles and rubella vaccine coverage, particularly in low- and middle-income countries, are needed if elimination goals are to be achieved. With this regard, measles and rubella vaccine microneedle patches (MRV-MNP), in which the vaccine is embedded in dissolving microneedles, offer several potential advantages over subcutaneous delivery. These include ease of administration, increased thermostability, an absence of sharps waste, reduced overall costs and pain-free administration. This trial will provide the first clinical trial data on MRV-MNP use and the first clinical vaccine trial of MNP technology in children and infants.

Methods

This is a phase 1/2, randomized, active-controlled, double-blind, double-dummy, age de-escalation trial. Based on the defined eligibility criteria for the trial, including screening laboratory investigations, 45 adults [18–40 years] followed by 120 toddlers [15–18 months] and 120 infants [9–10 months] will be enrolled in series. To allow double-blinding, participants will receive either the MRV-MNP and a placebo (0.9% sodium chloride) subcutaneous (SC) injection or a placebo MNP and the MRV by SC injection (MRV-SC). Local and systemic adverse event data will be collected for 14 days following study product administration. Safety laboratories will be repeated on day 7 and, in the adult cohort alone, on day 14. Unsolicited adverse events including serious adverse events will be collected until the final study visit for each participant on day 180. Measles and rubella serum neutralizing antibodies will be measured at baseline, on day 42 and on day 180. Cohort progression will be dependent on review of the unblinded safety data by an independent data monitoring committee.

Discussion

This trial will provide the first clinical data on the use of a MNP to deliver the MRV and the first data on the use of MNPs in a paediatric population. It will guide future product development decisions for what may be a key technology for future measles and rubella elimination.

Trial registration

Pan-African Clinical Trials Registry 202008836432905. ClinicalTrials.​govNCT04394689
Footnotes
1
Kola nuts (the seeds of Cola nitida and Cola acuminata) are given to members of the community at the end of the meeting as a sign of thanks and respect. Their acceptance by the community can be taken to indicate support for the trial
 
2
Definition based on the revised European Commission ‘Detailed guidance on the collection, verification and presentation of AE/reaction reports arising from clinical trials of medicinal products for human use’.
 
Literature
2.
go back to reference Tatsuo H, Ono N, Tanaka K, Yanagi Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature. 2000;406(6798):893–7.PubMedCrossRef Tatsuo H, Ono N, Tanaka K, Yanagi Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature. 2000;406(6798):893–7.PubMedCrossRef
3.
go back to reference Muhlebach MD, Mateo M, Sinn PL, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480(7378):530–3.PubMedPubMedCentralCrossRef Muhlebach MD, Mateo M, Sinn PL, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480(7378):530–3.PubMedPubMedCentralCrossRef
4.
go back to reference Remington PL, Hall WN, Davis IH, Herald A, Gunn RA. Airborne transmission of measles in a physician's office. JAMA. 1985;253(11):1574–7.PubMedCrossRef Remington PL, Hall WN, Davis IH, Herald A, Gunn RA. Airborne transmission of measles in a physician's office. JAMA. 1985;253(11):1574–7.PubMedCrossRef
5.
go back to reference Hope K, Boyd R, Conaty S, Maywood P. Measles transmission in health care waiting rooms: implications for public health response. Western Pacific Surveill Response J. 2012;3(4):33–8.CrossRef Hope K, Boyd R, Conaty S, Maywood P. Measles transmission in health care waiting rooms: implications for public health response. Western Pacific Surveill Response J. 2012;3(4):33–8.CrossRef
6.
go back to reference Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009;9(5):291–300.PubMedPubMedCentralCrossRef Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009;9(5):291–300.PubMedPubMedCentralCrossRef
7.
go back to reference Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993;2(1):23–41.PubMedCrossRef Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993;2(1):23–41.PubMedCrossRef
9.
go back to reference Tahara M, Ohno S, Sakai K, et al. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. J Virol. 2013;87(6):3583–6.PubMedPubMedCentralCrossRef Tahara M, Ohno S, Sakai K, et al. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. J Virol. 2013;87(6):3583–6.PubMedPubMedCentralCrossRef
11.
go back to reference WHO. Measles virus nomenclature update: 2012. Wkly Epidemiol Rec. 2012;87(9):73–81. WHO. Measles virus nomenclature update: 2012. Wkly Epidemiol Rec. 2012;87(9):73–81.
13.
go back to reference Fulton BO, Sachs D, Beaty SM, et al. Mutational analysis of measles virus suggests constraints on antigenic variation of the glycoproteins. Cell Rep. 2015;11(9):1331–8.PubMedPubMedCentralCrossRef Fulton BO, Sachs D, Beaty SM, et al. Mutational analysis of measles virus suggests constraints on antigenic variation of the glycoproteins. Cell Rep. 2015;11(9):1331–8.PubMedPubMedCentralCrossRef
14.
go back to reference Permar SR, Klumpp SA, Mansfield KG, et al. Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys. J Infect Dis. 2004;190(5):998–1005.PubMedCrossRef Permar SR, Klumpp SA, Mansfield KG, et al. Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys. J Infect Dis. 2004;190(5):998–1005.PubMedCrossRef
15.
go back to reference Permar SR, Klumpp SA, Mansfield KG, et al. Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol. 2003;77(7):4396–400.PubMedPubMedCentralCrossRef Permar SR, Klumpp SA, Mansfield KG, et al. Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol. 2003;77(7):4396–400.PubMedPubMedCentralCrossRef
17.
go back to reference Tamashiro VG, Perez HH, Griffin DE. Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr Infect Dis J. 1987;6(5):451–4.PubMedCrossRef Tamashiro VG, Perez HH, Griffin DE. Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr Infect Dis J. 1987;6(5):451–4.PubMedCrossRef
18.
go back to reference Akramuzzaman SM, Cutts FT, Wheeler JG, Hossain MJ. Increased childhood morbidity after measles is short-term in urban Bangladesh. Am J Epidemiol. 2000;151(7):723–35.PubMedCrossRef Akramuzzaman SM, Cutts FT, Wheeler JG, Hossain MJ. Increased childhood morbidity after measles is short-term in urban Bangladesh. Am J Epidemiol. 2000;151(7):723–35.PubMedCrossRef
19.
go back to reference Mina MJ, Kula T, Leng Y, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599–606.PubMedPubMedCentralCrossRef Mina MJ, Kula T, Leng Y, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599–606.PubMedPubMedCentralCrossRef
20.
go back to reference Stevens GA, Bennett JE, Hennocq Q, et al. Trends and mortality effects of vitamin a deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob Health. 2015;3(9):e528–36.PubMedCrossRef Stevens GA, Bennett JE, Hennocq Q, et al. Trends and mortality effects of vitamin a deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob Health. 2015;3(9):e528–36.PubMedCrossRef
21.
go back to reference Dixon MG, Ferrari M, Antoni S, et al. Progress toward regional measles elimination - worldwide, 2000-2020. MMWR Morb Mortal Wkly Rep. 2021;70(45):1563–9.PubMedPubMedCentralCrossRef Dixon MG, Ferrari M, Antoni S, et al. Progress toward regional measles elimination - worldwide, 2000-2020. MMWR Morb Mortal Wkly Rep. 2021;70(45):1563–9.PubMedPubMedCentralCrossRef
22.
go back to reference Wolfson LJ, Grais RF, Luquero FJ, Birmingham ME, Strebel PM. Estimates of measles case fatality ratios: a comprehensive review of community-based studies. Int J Epidemiol. 2009;38(1):192–205.PubMedCrossRef Wolfson LJ, Grais RF, Luquero FJ, Birmingham ME, Strebel PM. Estimates of measles case fatality ratios: a comprehensive review of community-based studies. Int J Epidemiol. 2009;38(1):192–205.PubMedCrossRef
26.
go back to reference Petruzziello R, Orsi N, Macchia S, Rieti S, Frey TK, Mastromarino P. Pathway of rubella virus infectious entry into Vero cells. J Gen Virol. 1996;77(Pt 2):303–8.PubMedCrossRef Petruzziello R, Orsi N, Macchia S, Rieti S, Frey TK, Mastromarino P. Pathway of rubella virus infectious entry into Vero cells. J Gen Virol. 1996;77(Pt 2):303–8.PubMedCrossRef
27.
go back to reference Katow S, Sugiura A. Antibody response to individual rubella virus proteins in congenital and other rubella virus infections. J Clin Microbiol. 1985;21(3):449–51.PubMedPubMedCentralCrossRef Katow S, Sugiura A. Antibody response to individual rubella virus proteins in congenital and other rubella virus infections. J Clin Microbiol. 1985;21(3):449–51.PubMedPubMedCentralCrossRef
28.
go back to reference Umino Y, Sato TA, Katow S, Matsuno T, Sugiura A. Monoclonal antibodies directed to E1 glycoprotein of rubella virus. Arch Virol. 1985;83(1-2):33–42.PubMedCrossRef Umino Y, Sato TA, Katow S, Matsuno T, Sugiura A. Monoclonal antibodies directed to E1 glycoprotein of rubella virus. Arch Virol. 1985;83(1-2):33–42.PubMedCrossRef
29.
go back to reference Cong H, Jiang Y, Tien P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J Virol. 2011;85(21):11038–47.PubMedPubMedCentralCrossRef Cong H, Jiang Y, Tien P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J Virol. 2011;85(21):11038–47.PubMedPubMedCentralCrossRef
30.
go back to reference Besson Duvanel C, Honegger P, Matthieu JM. Antibodies directed against rubella virus induce demyelination in aggregating rat brain cell cultures. J Neurosci Res. 2001;65(5):446–54.PubMedCrossRef Besson Duvanel C, Honegger P, Matthieu JM. Antibodies directed against rubella virus induce demyelination in aggregating rat brain cell cultures. J Neurosci Res. 2001;65(5):446–54.PubMedCrossRef
31.
go back to reference Edmunds WJ, Gay NJ, Kretzschmar M, Pebody RG, Wachmann H. Network EPES-e. the pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiol Infect. 2000;125(3):635–50.PubMedPubMedCentralCrossRef Edmunds WJ, Gay NJ, Kretzschmar M, Pebody RG, Wachmann H. Network EPES-e. the pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiol Infect. 2000;125(3):635–50.PubMedPubMedCentralCrossRef
33.
go back to reference Cutts FT, Abebe A, Messele T, et al. Sero-epidemiology of rubella in the urban population of Addis Ababa, Ethiopia. Epidemiol Infect. 2000;124(3):467–79.PubMedPubMedCentralCrossRef Cutts FT, Abebe A, Messele T, et al. Sero-epidemiology of rubella in the urban population of Addis Ababa, Ethiopia. Epidemiol Infect. 2000;124(3):467–79.PubMedPubMedCentralCrossRef
34.
go back to reference WHO. Rubella vaccines: WHO position paper - July 2020. Weekly Epidemiol Record. 2020;95:306–24. WHO. Rubella vaccines: WHO position paper - July 2020. Weekly Epidemiol Record. 2020;95:306–24.
35.
go back to reference WHO. Global measles and rubella strategic plan 2012-2020. WHO. Global measles and rubella strategic plan 2012-2020.
36.
go back to reference Cordoba P, Lanoel A, Grutadauria S, Zapata M. Evaluation of antibodies against a rubella virus neutralizing domain for determination of immune status. Clin Diagn Lab Immunol. 2000;7(6):964–6.PubMedPubMedCentralCrossRef Cordoba P, Lanoel A, Grutadauria S, Zapata M. Evaluation of antibodies against a rubella virus neutralizing domain for determination of immune status. Clin Diagn Lab Immunol. 2000;7(6):964–6.PubMedPubMedCentralCrossRef
37.
go back to reference Mitchell LA, Zhang T, Ho M, et al. Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay. J Clin Microbiol. 1992;30(7):1841–7.PubMedPubMedCentralCrossRef Mitchell LA, Zhang T, Ho M, et al. Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay. J Clin Microbiol. 1992;30(7):1841–7.PubMedPubMedCentralCrossRef
38.
go back to reference Mitchell LA, Ho MK, Rogers JE, et al. Rubella reimmunization: comparative analysis of the immunoglobulin G response to rubella virus vaccine in previously seronegative and seropositive individuals. J Clin Microbiol. 1996;34(9):2210–8.PubMedPubMedCentralCrossRef Mitchell LA, Ho MK, Rogers JE, et al. Rubella reimmunization: comparative analysis of the immunoglobulin G response to rubella virus vaccine in previously seronegative and seropositive individuals. J Clin Microbiol. 1996;34(9):2210–8.PubMedPubMedCentralCrossRef
39.
go back to reference Zrein M, Joncas JH, Pedneault L, Robillard L, Dwyer RJ, Lacroix M. Comparison of a whole-virus enzyme immunoassay (EIA) with a peptide-based EIA for detecting rubella virus immunoglobulin G antibodies following rubella vaccination. J Clin Microbiol. 1993;31(6):1521–4.PubMedPubMedCentralCrossRef Zrein M, Joncas JH, Pedneault L, Robillard L, Dwyer RJ, Lacroix M. Comparison of a whole-virus enzyme immunoassay (EIA) with a peptide-based EIA for detecting rubella virus immunoglobulin G antibodies following rubella vaccination. J Clin Microbiol. 1993;31(6):1521–4.PubMedPubMedCentralCrossRef
40.
go back to reference Miller E, Cradock-Watson JE, Pollock TM. Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet. 1982;2(8302):781–4.PubMedCrossRef Miller E, Cradock-Watson JE, Pollock TM. Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet. 1982;2(8302):781–4.PubMedCrossRef
41.
go back to reference Cutts FT, Robertson SE, Diaz-Ortega JL, Samuel R. Control of rubella and congenital rubella syndrome (CRS) in developing countries, part 1: burden of disease from CRS. Bull World Health Organ. 1997;75(1):55–68.PubMedPubMedCentral Cutts FT, Robertson SE, Diaz-Ortega JL, Samuel R. Control of rubella and congenital rubella syndrome (CRS) in developing countries, part 1: burden of disease from CRS. Bull World Health Organ. 1997;75(1):55–68.PubMedPubMedCentral
42.
go back to reference Grant GB, Desai S, Dumolard L, Kretsinger K, Reef SE. Progress toward rubella and congenital rubella syndrome control and elimination -worldwide, 2000-2018. MMWR Morb Mortal Wkly Rep. 2019;68(39):855–9.PubMedPubMedCentralCrossRef Grant GB, Desai S, Dumolard L, Kretsinger K, Reef SE. Progress toward rubella and congenital rubella syndrome control and elimination -worldwide, 2000-2018. MMWR Morb Mortal Wkly Rep. 2019;68(39):855–9.PubMedPubMedCentralCrossRef
43.
go back to reference WHO. Measles vaccines: WHO position paper - April 2017. Wkly Epideiol Record. 2017;17:205–28. WHO. Measles vaccines: WHO position paper - April 2017. Wkly Epideiol Record. 2017;17:205–28.
44.
go back to reference Rubella and congenital rubella syndrome control and elimination - global progress, 2012. Wkly Epidemiol Rec. 2013;88(49):521–7. Rubella and congenital rubella syndrome control and elimination - global progress, 2012. Wkly Epidemiol Rec. 2013;88(49):521–7.
45.
go back to reference Dabbagh A, Patel MK, Dumolard L, et al. Progress toward regional measles elimination - worldwide, 2000-2016. MMWR Morb Mortal Wkly Rep. 2017;66(42):1148–53.PubMedPubMedCentralCrossRef Dabbagh A, Patel MK, Dumolard L, et al. Progress toward regional measles elimination - worldwide, 2000-2016. MMWR Morb Mortal Wkly Rep. 2017;66(42):1148–53.PubMedPubMedCentralCrossRef
46.
go back to reference Perry RT, Murray JS, Gacic-Dobo M, et al. Progress toward regional measles elimination - worldwide, 2000-2014. MMWR Morb Mortal Wkly Rep. 2015;64(44):1246–51.PubMedCrossRef Perry RT, Murray JS, Gacic-Dobo M, et al. Progress toward regional measles elimination - worldwide, 2000-2014. MMWR Morb Mortal Wkly Rep. 2015;64(44):1246–51.PubMedCrossRef
47.
go back to reference Gastañaduy PA, Goodson JL, Panagiotakopoulos L, Rota PA, Orenstein WA, Patel M. Measles in the 21st century: progress toward achieving and sustaining elimination. J Infect Dis. 2021;224(Supplement_4):S420–S8.PubMedPubMedCentralCrossRef Gastañaduy PA, Goodson JL, Panagiotakopoulos L, Rota PA, Orenstein WA, Patel M. Measles in the 21st century: progress toward achieving and sustaining elimination. J Infect Dis. 2021;224(Supplement_4):S420–S8.PubMedPubMedCentralCrossRef
48.
go back to reference Orenstein WA, Cairns L, Hinman A, Nkowane B, Olive JM, Reingold AL. Measles and rubella global strategic plan 2012-2020 midterm review report: background and summary. Vaccine. 2018;36(Suppl 1):A35–42.PubMedCrossRef Orenstein WA, Cairns L, Hinman A, Nkowane B, Olive JM, Reingold AL. Measles and rubella global strategic plan 2012-2020 midterm review report: background and summary. Vaccine. 2018;36(Suppl 1):A35–42.PubMedCrossRef
49.
go back to reference Orenstein WA, Hinman A, Nkowane B, Olive JM, Reingold A. Measles and rubella global strategic plan 2012-2020 midterm review. Vaccine. 2018;36(Suppl 1):A1–A34.PubMedCrossRef Orenstein WA, Hinman A, Nkowane B, Olive JM, Reingold A. Measles and rubella global strategic plan 2012-2020 midterm review. Vaccine. 2018;36(Suppl 1):A1–A34.PubMedCrossRef
53.
go back to reference Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Contr Release. 2016;240:135–41.CrossRef Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Contr Release. 2016;240:135–41.CrossRef
54.
go back to reference Edens C, Collins ML, Ayers J, Rota PA, Prausnitz MR. Measles vaccination using a microneedle patch. Vaccine. 2013;31(34):3403–9.PubMedCrossRef Edens C, Collins ML, Ayers J, Rota PA, Prausnitz MR. Measles vaccination using a microneedle patch. Vaccine. 2013;31(34):3403–9.PubMedCrossRef
55.
go back to reference Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33(37):4712–8.PubMedPubMedCentralCrossRef Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33(37):4712–8.PubMedPubMedCentralCrossRef
56.
go back to reference Joyce JC, Carroll TD, Collins ML, et al. A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J Infect Dis. 2018;218(1):124–32.PubMedPubMedCentralCrossRef Joyce JC, Carroll TD, Collins ML, et al. A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J Infect Dis. 2018;218(1):124–32.PubMedPubMedCentralCrossRef
57.
go back to reference Rouphael NG, Paine M, Mosley R, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390(10095):649–58.PubMedPubMedCentralCrossRef Rouphael NG, Paine M, Mosley R, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390(10095):649–58.PubMedPubMedCentralCrossRef
58.
go back to reference Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1–7.PubMedPubMedCentralCrossRef Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1–7.PubMedPubMedCentralCrossRef
59.
go back to reference Wariri O, Nkereuwem E, Erondu NA, et al. A scorecard of progress towards measles elimination in 15 west African countries, 2001-19: a retrospective, multicountry analysis of national immunisation coverage and surveillance data. Lancet Glob Health. 2021;9(3):e280–e90.PubMedPubMedCentralCrossRef Wariri O, Nkereuwem E, Erondu NA, et al. A scorecard of progress towards measles elimination in 15 west African countries, 2001-19: a retrospective, multicountry analysis of national immunisation coverage and surveillance data. Lancet Glob Health. 2021;9(3):e280–e90.PubMedPubMedCentralCrossRef
60.
go back to reference Clarke E, Saidu Y, Adetifa JU, et al. Safety and immunogenicity of inactivated poliovirus vaccine when given with measles-rubella combined vaccine and yellow fever vaccine and when given via different administration routes: a phase 4, randomised, non-inferiority trial in the Gambia. Lancet Glob Health. 2016;4(8):e534–47.PubMedCrossRef Clarke E, Saidu Y, Adetifa JU, et al. Safety and immunogenicity of inactivated poliovirus vaccine when given with measles-rubella combined vaccine and yellow fever vaccine and when given via different administration routes: a phase 4, randomised, non-inferiority trial in the Gambia. Lancet Glob Health. 2016;4(8):e534–47.PubMedCrossRef
62.
go back to reference Metcalf CJ, Lessler J, Klepac P, Cutts F, Grenfell BT. Impact of birth rate, seasonality and transmission rate on minimum levels of coverage needed for rubella vaccination. Epidemiol Infect. 2012;140(12):2290–301.PubMedCrossRef Metcalf CJ, Lessler J, Klepac P, Cutts F, Grenfell BT. Impact of birth rate, seasonality and transmission rate on minimum levels of coverage needed for rubella vaccination. Epidemiol Infect. 2012;140(12):2290–301.PubMedCrossRef
63.
go back to reference Auta A, Adewuyi EO, Tor-Anyiin A, et al. Health-care workers’ occupational exposures to body fluids in 21 countries in Africa: systematic review and meta-analysis. Bull World Health Organ. 2017;95(12):831–41F.PubMedPubMedCentralCrossRef Auta A, Adewuyi EO, Tor-Anyiin A, et al. Health-care workers’ occupational exposures to body fluids in 21 countries in Africa: systematic review and meta-analysis. Bull World Health Organ. 2017;95(12):831–41F.PubMedPubMedCentralCrossRef
64.
go back to reference Bouya S, Balouchi A, Rafiemanesh H, et al. Global prevalence and device related causes of needle stick injuries among health care workers: a systematic review and meta-analysis. Ann Glob Health. 2020;86(1):35.PubMedPubMedCentralCrossRef Bouya S, Balouchi A, Rafiemanesh H, et al. Global prevalence and device related causes of needle stick injuries among health care workers: a systematic review and meta-analysis. Ann Glob Health. 2020;86(1):35.PubMedPubMedCentralCrossRef
65.
go back to reference Adhikari BB, Goodson JL, Chu SY, Rota PA, Meltzer MI. Assessing the potential cost-effectiveness of microneedle patches in childhood measles vaccination programs: the case for further research and development. Drugs R D. 2016;16(4):327–38.PubMedPubMedCentralCrossRef Adhikari BB, Goodson JL, Chu SY, Rota PA, Meltzer MI. Assessing the potential cost-effectiveness of microneedle patches in childhood measles vaccination programs: the case for further research and development. Drugs R D. 2016;16(4):327–38.PubMedPubMedCentralCrossRef
66.
go back to reference Idoko OT, Hampton LM, Mboizi RB, et al. Acceptance of multiple injectable vaccines in a single immunization visit in the Gambia pre and post introduction of inactivated polio vaccine. Vaccine. 2016;34(41):5034–9.PubMedCrossRef Idoko OT, Hampton LM, Mboizi RB, et al. Acceptance of multiple injectable vaccines in a single immunization visit in the Gambia pre and post introduction of inactivated polio vaccine. Vaccine. 2016;34(41):5034–9.PubMedCrossRef
67.
go back to reference Cohen BJ, Audet S, Andrews N, Beeler J, test WHOwgomprn. Plaque reduction neutralization test for measles antibodies: description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine. 2007;26(1):59–66.PubMedCrossRef Cohen BJ, Audet S, Andrews N, Beeler J, test WHOwgomprn. Plaque reduction neutralization test for measles antibodies: description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine. 2007;26(1):59–66.PubMedCrossRef
68.
go back to reference Cape S, Chaudhari A, Vaidya V, et al. Safety and immunogenicity of dry powder measles vaccine administered by inhalation: a randomized controlled phase I clinical trial. Vaccine. 2014;32(50):6791–7.PubMedCrossRef Cape S, Chaudhari A, Vaidya V, et al. Safety and immunogenicity of dry powder measles vaccine administered by inhalation: a randomized controlled phase I clinical trial. Vaccine. 2014;32(50):6791–7.PubMedCrossRef
69.
go back to reference Chen MH, Zhu Z, Zhang Y, et al. An indirect immunocolorimetric assay to detect rubella virus infected cells. J Virol Methods. 2007;146(1-2):414–8.PubMedCrossRef Chen MH, Zhu Z, Zhang Y, et al. An indirect immunocolorimetric assay to detect rubella virus infected cells. J Virol Methods. 2007;146(1-2):414–8.PubMedCrossRef
70.
go back to reference Smits GP, van Gageldonk PG, Schouls LM, van der Klis FR, Berbers GA. Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus. Clin Vaccine Immunol. 2012;19(3):396–400.PubMedPubMedCentralCrossRef Smits GP, van Gageldonk PG, Schouls LM, van der Klis FR, Berbers GA. Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus. Clin Vaccine Immunol. 2012;19(3):396–400.PubMedPubMedCentralCrossRef
72.
go back to reference WHO International Standard; Anti rubella immunoglobulin, human; NIBSC code: RUBI-1-94; Instructions for use; (Version 8.0, Dated 11/03/2019). WHO International Standard; Anti rubella immunoglobulin, human; NIBSC code: RUBI-1-94; Instructions for use; (Version 8.0, Dated 11/03/2019).
Metadata
Title
Study protocol for a phase 1/2, single-centre, double-blind, double-dummy, randomized, active-controlled, age de-escalation trial to assess the safety, tolerability and immunogenicity of a measles and rubella vaccine delivered by a microneedle patch in healthy adults (18 to 40 years), measles and rubella vaccine-primed toddlers (15 to 18 months) and measles and rubella vaccine-naïve infants (9 to 10 months) in The Gambia [Measles and Rubella Vaccine Microneedle Patch Phase 1/2 Age De-escalation Trial]
Authors
Ikechukwu Adigweme
Edem Akpalu
Mohammed Yisa
Simon Donkor
Lamin B. Jarju
Baba Danso
Anthony Mendy
David Jeffries
Abdoulie Njie
Andrew Bruce
Michael Royals
James L. Goodson
Mark R. Prausnitz
Devin McAllister
Paul A. Rota
Sebastien Henry
Ed Clarke
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Rubella
Published in
Trials / Issue 1/2022
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-022-06493-5

Other articles of this Issue 1/2022

Trials 1/2022 Go to the issue