Skip to main content
Top
Published in: Molecular Pain 1/2013

Open Access 01-12-2013 | Research

Role of voltage gated Ca2+ channels in rat visceral hypersensitivity change induced by 2,4,6-trinitrobenzene sulfonic acid

Authors: Aihua Qian, Dandan Song, Yong Li, Xinqiu Liu, Dong Tang, Weiyan Yao, Yaozong Yuan

Published in: Molecular Pain | Issue 1/2013

Login to get access

Abstract

Background

Visceral pain is common symptom involved in many gastrointestinal disorders such as inflammatory bowel disease. The underlying molecular mechanisms remain elusive. We investigated the molecular mechanisms and the role for voltage gated calcium channel (VGCC) in the pathogenesis in a rat model of 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced visceral inflammatory hypersensitivity.

Results

Using Agilent cDNA arrays, we found 172 genes changed significantly in dorsal root ganglia (DRG) of TNBS treated rats. Among these changed genes, Cav1.2 and Cav2.3 were significantly up-regulated. Then the RT-PCR and Western blot further confirmed the up-regulation of Cav1.2 and Cav2.3. The whole cell patch clamp recording of acutely dissociated colonic specific DRG neurons showed that the peak IBa density was significantly increased in colonic neurons of TNBS treated rats compared with control rats (−127.82 ± 20.82 pA/pF Vs −91.67 ± 19.02 pA/pF, n = 9, *P < 0.05). To distinguish the different type of calcium currents with the corresponding selective channel blockers, we found that L-type (−38.56 ± 3.97 pA/pF Vs −25.75 ± 3.35 pA/pF, n = 9, * P < 0.05) and R-type (−13.31 ± 1.36 pA/pF Vs −8.60 ± 1.25 pA/pF, n = 9, * P < 0.05) calcium current density were significantly increased in colonic DRG neurons of TNBS treated rats compared with control rats. In addition, pharmacological blockade with L-type antagonist (nimodipine) and R-type antagonist (SNX-482) with intrathecal injection attenuates visceral pain in TNBS induced inflammatory visceral hypersensitivity.

Conclusion

Cav1.2 and Cav2.3 in colonic primary sensory neurons play an important role in visceral inflammatory hyperalgesia, which maybe the potential therapeutic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller RJ: Multiple calcium channels and neuronal function. Science 1987, 235(4784):46–52. 10.1126/science.2432656CrossRefPubMed Miller RJ: Multiple calcium channels and neuronal function. Science 1987, 235(4784):46–52. 10.1126/science.2432656CrossRefPubMed
2.
go back to reference Diaz A, Dickenson AH: Blockade of spinal N- and P-type, but not L-type, calcium channels inhibits the excitability of rat dorsal horn neurones produced by subcutaneous formalin inflammation. Pain 1997, 69(1–2):93–100.CrossRefPubMed Diaz A, Dickenson AH: Blockade of spinal N- and P-type, but not L-type, calcium channels inhibits the excitability of rat dorsal horn neurones produced by subcutaneous formalin inflammation. Pain 1997, 69(1–2):93–100.CrossRefPubMed
3.
go back to reference Miranda HF: Antinociceptive effects of Ca2+ channel blockers. Eur J Pharmacol 1992, 217(2–3):137–141.CrossRefPubMed Miranda HF: Antinociceptive effects of Ca2+ channel blockers. Eur J Pharmacol 1992, 217(2–3):137–141.CrossRefPubMed
4.
go back to reference Malmberg AB, Yaksh TL: Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. J Neurosci 1994, 14(8):4882–4890.PubMed Malmberg AB, Yaksh TL: Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. J Neurosci 1994, 14(8):4882–4890.PubMed
5.
go back to reference Malmberg AB, Yaksh TL: Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 1995, 60(1):83–90. 10.1016/0304-3959(94)00094-UCrossRefPubMed Malmberg AB, Yaksh TL: Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 1995, 60(1):83–90. 10.1016/0304-3959(94)00094-UCrossRefPubMed
6.
go back to reference Field MJ: Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 1997, 282(3):1242–1246.PubMed Field MJ: Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 1997, 282(3):1242–1246.PubMed
7.
go back to reference Tan ZY: Buthus martensi Karsch agonist of skeletal-muscle RyR-1, a scorpion active polypeptide: antinociceptive effect on rat peripheral nervous system and spinal cord, and inhibition of voltage-gated Na(+) currents in dorsal root ganglion neurons. Neurosci Lett 2001, 297(2):65–68. 10.1016/S0304-3940(00)01642-6CrossRefPubMed Tan ZY: Buthus martensi Karsch agonist of skeletal-muscle RyR-1, a scorpion active polypeptide: antinociceptive effect on rat peripheral nervous system and spinal cord, and inhibition of voltage-gated Na(+) currents in dorsal root ganglion neurons. Neurosci Lett 2001, 297(2):65–68. 10.1016/S0304-3940(00)01642-6CrossRefPubMed
8.
go back to reference Zhang XF: Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 2005, 1052(1):63–70. 10.1016/j.brainres.2005.06.022CrossRefPubMed Zhang XF: Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 2005, 1052(1):63–70. 10.1016/j.brainres.2005.06.022CrossRefPubMed
9.
go back to reference Chessell IP: Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005, 114(3):386–396. 10.1016/j.pain.2005.01.002CrossRefPubMed Chessell IP: Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005, 114(3):386–396. 10.1016/j.pain.2005.01.002CrossRefPubMed
10.
go back to reference Colomar A: Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 2003, 278(33):30732–30740. 10.1074/jbc.M304534200CrossRefPubMed Colomar A: Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 2003, 278(33):30732–30740. 10.1074/jbc.M304534200CrossRefPubMed
11.
go back to reference Labasi JM: Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 2002, 168(12):6436–6445.CrossRefPubMed Labasi JM: Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 2002, 168(12):6436–6445.CrossRefPubMed
12.
go back to reference Schafers M: Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003, 23(7):3028–3038.PubMed Schafers M: Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003, 23(7):3028–3038.PubMed
13.
go back to reference Zhang X: Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 2007, 104(23):9864–9869. 10.1073/pnas.0611048104PubMedCentralCrossRefPubMed Zhang X: Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 2007, 104(23):9864–9869. 10.1073/pnas.0611048104PubMedCentralCrossRefPubMed
14.
go back to reference Nakamura F, Strittmatter SM: P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci U S A 1996, 93(19):10465–10470. 10.1073/pnas.93.19.10465PubMedCentralCrossRefPubMed Nakamura F, Strittmatter SM: P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci U S A 1996, 93(19):10465–10470. 10.1073/pnas.93.19.10465PubMedCentralCrossRefPubMed
15.
go back to reference Chen Y: Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci U S A 2008, 105(43):16773–16778. 10.1073/pnas.0801793105PubMedCentralCrossRefPubMed Chen Y: Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci U S A 2008, 105(43):16773–16778. 10.1073/pnas.0801793105PubMedCentralCrossRefPubMed
16.
go back to reference Onda A, Yabuki S, Kikuchi S: Effects of neutralizing antibodies to tumor necrosis factor-alpha on nucleus pulposus-induced abnormal nociresponses in rat dorsal horn neurons. Spine (Phila Pa 1976) 2003, 28(10):967–972. Onda A, Yabuki S, Kikuchi S: Effects of neutralizing antibodies to tumor necrosis factor-alpha on nucleus pulposus-induced abnormal nociresponses in rat dorsal horn neurons. Spine (Phila Pa 1976) 2003, 28(10):967–972.
17.
go back to reference Ozaktay AC: Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 2006, 15(10):1529–1537. 10.1007/s00586-005-0058-8CrossRefPubMed Ozaktay AC: Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 2006, 15(10):1529–1537. 10.1007/s00586-005-0058-8CrossRefPubMed
18.
go back to reference Abbott FV, Hong Y, Blier P: Activation of 5-HT2A receptors potentiates pain produced by inflammatory mediators. Neuropharmacology 1996, 35(1):99–110. 10.1016/0028-3908(95)00136-0CrossRefPubMed Abbott FV, Hong Y, Blier P: Activation of 5-HT2A receptors potentiates pain produced by inflammatory mediators. Neuropharmacology 1996, 35(1):99–110. 10.1016/0028-3908(95)00136-0CrossRefPubMed
19.
go back to reference Espejo EF, Gil E: Antagonism of peripheral 5-HT4 receptors reduces visceral and cutaneous pain in mice, and induces visceral analgesia after simultaneous inactivation of 5-HT3 receptors. Brain Res 1998, 788(1–2):20–24.CrossRefPubMed Espejo EF, Gil E: Antagonism of peripheral 5-HT4 receptors reduces visceral and cutaneous pain in mice, and induces visceral analgesia after simultaneous inactivation of 5-HT3 receptors. Brain Res 1998, 788(1–2):20–24.CrossRefPubMed
20.
go back to reference Tokunaga A, Saika M, Senba E: 5-HT2A receptor subtype is involved in the thermal hyperalgesic mechanism of serotonin in the periphery. Pain 1998, 76(3):349–355. 10.1016/S0304-3959(98)00066-9CrossRefPubMed Tokunaga A, Saika M, Senba E: 5-HT2A receptor subtype is involved in the thermal hyperalgesic mechanism of serotonin in the periphery. Pain 1998, 76(3):349–355. 10.1016/S0304-3959(98)00066-9CrossRefPubMed
21.
go back to reference Kania BF: The inhibition of experimentally induced visceral hyperalgesia by nifedipine - a voltage-gated Ca(2+) channels blocker (VGCCs) in sheep. Res Vet Sci 2009, 86(2):285–292. 10.1016/j.rvsc.2008.04.010CrossRefPubMed Kania BF: The inhibition of experimentally induced visceral hyperalgesia by nifedipine - a voltage-gated Ca(2+) channels blocker (VGCCs) in sheep. Res Vet Sci 2009, 86(2):285–292. 10.1016/j.rvsc.2008.04.010CrossRefPubMed
22.
go back to reference Kania BF, Lewicki S: Influence of nifedypine on the hyperalgesic action of duodenal distention in sheep. Pol J Vet Sci 2007, 10(4):263–269.PubMed Kania BF, Lewicki S: Influence of nifedypine on the hyperalgesic action of duodenal distention in sheep. Pol J Vet Sci 2007, 10(4):263–269.PubMed
23.
go back to reference Kania BF, Sutiak V: Influence of centrally administered diltiazem on behavioural responses, clinical symptoms, reticulo-ruminal contractions and plasma catecholamine level after experimentally induced duodenal distension in sheep. Res Vet Sci 2011, 90(2):291–297. 10.1016/j.rvsc.2010.06.012CrossRefPubMed Kania BF, Sutiak V: Influence of centrally administered diltiazem on behavioural responses, clinical symptoms, reticulo-ruminal contractions and plasma catecholamine level after experimentally induced duodenal distension in sheep. Res Vet Sci 2011, 90(2):291–297. 10.1016/j.rvsc.2010.06.012CrossRefPubMed
24.
go back to reference Bell TJ: Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004, 41(1):127–138. 10.1016/S0896-6273(03)00801-8CrossRefPubMed Bell TJ: Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004, 41(1):127–138. 10.1016/S0896-6273(03)00801-8CrossRefPubMed
25.
go back to reference Kim DS: Changes in voltage-gated calcium channel alpha(1) gene expression in rat dorsal root ganglia following peripheral nerve injury. Brain Res Mol Brain Res 2001, 96(1–2):151–156.CrossRefPubMed Kim DS: Changes in voltage-gated calcium channel alpha(1) gene expression in rat dorsal root ganglia following peripheral nerve injury. Brain Res Mol Brain Res 2001, 96(1–2):151–156.CrossRefPubMed
26.
go back to reference Brown SP, Safo PK, Regehr WG: Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci 2004, 24(24):5623–5631. 10.1523/JNEUROSCI.0918-04.2004CrossRefPubMed Brown SP, Safo PK, Regehr WG: Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci 2004, 24(24):5623–5631. 10.1523/JNEUROSCI.0918-04.2004CrossRefPubMed
27.
go back to reference Dietrich D: Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 2003, 39(3):483–496. 10.1016/S0896-6273(03)00430-6CrossRefPubMed Dietrich D: Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 2003, 39(3):483–496. 10.1016/S0896-6273(03)00430-6CrossRefPubMed
28.
go back to reference Matthews EA: The Cav2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur J Neurosci 2007, 25(12):3561–3569. 10.1111/j.1460-9568.2007.05605.xCrossRefPubMed Matthews EA: The Cav2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur J Neurosci 2007, 25(12):3561–3569. 10.1111/j.1460-9568.2007.05605.xCrossRefPubMed
29.
go back to reference Murakami M: Distribution of various calcium channel alpha(1) subunits in murine DRG neurons and antinociceptive effect of omega-conotoxin SVIB in mice. Brain Res 2001, 903(1–2):231–236.CrossRefPubMed Murakami M: Distribution of various calcium channel alpha(1) subunits in murine DRG neurons and antinociceptive effect of omega-conotoxin SVIB in mice. Brain Res 2001, 903(1–2):231–236.CrossRefPubMed
30.
go back to reference Gold MS, Shuster MJ, Levine JD: Role of a Ca(2+)-dependent slow afterhyperpolarization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett 1996, 205(3):161–164. 10.1016/0304-3940(96)12401-0CrossRefPubMed Gold MS, Shuster MJ, Levine JD: Role of a Ca(2+)-dependent slow afterhyperpolarization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett 1996, 205(3):161–164. 10.1016/0304-3940(96)12401-0CrossRefPubMed
31.
go back to reference Scholz A, Gruss M, Vogel W: Properties and functions of calcium-activated K + channels in small neurones of rat dorsal root ganglion studied in a thin slice preparation. J Physiol 1998, 513(Pt 1):55–69.PubMedCentralCrossRefPubMed Scholz A, Gruss M, Vogel W: Properties and functions of calcium-activated K + channels in small neurones of rat dorsal root ganglion studied in a thin slice preparation. J Physiol 1998, 513(Pt 1):55–69.PubMedCentralCrossRefPubMed
32.
go back to reference Zhang YH, Kenyon JL, Nicol GD: Phorbol ester-induced inhibition of potassium currents in rat sensory neurons requires voltage-dependent entry of calcium. J Neurophysiol 2001, 85(1):362–373.PubMed Zhang YH, Kenyon JL, Nicol GD: Phorbol ester-induced inhibition of potassium currents in rat sensory neurons requires voltage-dependent entry of calcium. J Neurophysiol 2001, 85(1):362–373.PubMed
33.
go back to reference Eshete F, Fields RD: Spike frequency decoding and autonomous activation of Ca2 + −calmodulin-dependent protein kinase II in dorsal root ganglion neurons. J Neurosci 2001, 21(17):6694–6705.PubMed Eshete F, Fields RD: Spike frequency decoding and autonomous activation of Ca2 + −calmodulin-dependent protein kinase II in dorsal root ganglion neurons. J Neurosci 2001, 21(17):6694–6705.PubMed
34.
go back to reference Fields RD, Lee PR, Cohen JE: Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 2005, 37(5):433–442. 10.1016/j.ceca.2005.01.011CrossRefPubMed Fields RD, Lee PR, Cohen JE: Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 2005, 37(5):433–442. 10.1016/j.ceca.2005.01.011CrossRefPubMed
35.
go back to reference Stengel W, Jainz M, Andreas K: Different potencies of dihydropyridine derivatives in blocking T-type but not L-type Ca2+ channels in neuroblastoma-glioma hybrid cells. Eur J Pharmacol 1998, 342(2–3):339–345.CrossRefPubMed Stengel W, Jainz M, Andreas K: Different potencies of dihydropyridine derivatives in blocking T-type but not L-type Ca2+ channels in neuroblastoma-glioma hybrid cells. Eur J Pharmacol 1998, 342(2–3):339–345.CrossRefPubMed
36.
go back to reference Bourinet E: Interaction of SNX482 with domains III and IV inhibits activation gating of alpha (1E) (Ca(V)2.3) calcium channels. Biophys J 2001, 81(1):79–88. 10.1016/S0006-3495(01)75681-0PubMedCentralCrossRefPubMed Bourinet E: Interaction of SNX482 with domains III and IV inhibits activation gating of alpha (1E) (Ca(V)2.3) calcium channels. Biophys J 2001, 81(1):79–88. 10.1016/S0006-3495(01)75681-0PubMedCentralCrossRefPubMed
37.
go back to reference Qian AH: Voltage-gated potassium channels in IB4-positive colonic sensory neurons mediate visceral hypersensitivity in the rat. Am J Gastroenterol 2009, 104(8):2014–2027. 10.1038/ajg.2009.227CrossRefPubMed Qian AH: Voltage-gated potassium channels in IB4-positive colonic sensory neurons mediate visceral hypersensitivity in the rat. Am J Gastroenterol 2009, 104(8):2014–2027. 10.1038/ajg.2009.227CrossRefPubMed
Metadata
Title
Role of voltage gated Ca2+ channels in rat visceral hypersensitivity change induced by 2,4,6-trinitrobenzene sulfonic acid
Authors
Aihua Qian
Dandan Song
Yong Li
Xinqiu Liu
Dong Tang
Weiyan Yao
Yaozong Yuan
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2013
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-9-15

Other articles of this Issue 1/2013

Molecular Pain 1/2013 Go to the issue