Skip to main content
Top
Published in: Tumor Biology 1/2012

01-02-2012 | Review

Role of VHL gene mutation in human renal cell carcinoma

Authors: Wani Arjumand, Sarwat Sultana

Published in: Tumor Biology | Issue 1/2012

Login to get access

Abstract

The Von Hippel–Lindau (VHL) is an inherited neoplasia syndrome caused by the inactivation of VHL tumor suppressor gene, and somatic mutation of this gene has been related to the development of sporadic clear cell renal carcinoma. The affected individuals are at higher risk for the development of tumor in other organs, which include pheochromocytomas, retinal angioma, pancreatic cysts, and CNS hemangioblastomas. The VHL mRNA encodes a protein (pVHL) that contains 213 amino acid residues which migrate with an apparent molecular weight of 24 to 30 kDa. The VHL gene protein has multiple functions that are linked to tumor suppression, but the best recognized and evidently linked to the development of renal cell carcinoma (RCC) is inhibition of hypoxia-inducible factor (HIF), as well as plays a role in targeting HIF for ubiquitin-mediated degradation. Aberrations in VHL's function, either through mutation or promoter hypermethylation, lead to the accumulation of HIF, which will transcriptionally upregulate a sequence of hypoxia responsive genes, including epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, and other proangiogenic factors, resulting in upregulated blood vessel growth, one of the prerequisites of a tumor. HIF plays a critical role in pVHL-defective tumor formation, raising the possibility that drugs directed against HIF or its downstream targets (such as vascular endothelial growth factor) may one day play a role in the treatment of RCC. Moreover, a number of drugs have been developed that target HIF-responsive gene products, many of these targeted therapies have demonstrated significant activity in kidney cancer clinical trials and signify substantive advances in the treatment of this disease.
Literature
1.
go back to reference Kashyap MK, Kumar A, Emelianenko N, Kashyap A, Kaushik R, Huang R, et al. Biochemical and molecular markers in renal cell carcinoma: an update and future prospects. Biomarkers. 2005;10:258–94.PubMedCrossRef Kashyap MK, Kumar A, Emelianenko N, Kashyap A, Kaushik R, Huang R, et al. Biochemical and molecular markers in renal cell carcinoma: an update and future prospects. Biomarkers. 2005;10:258–94.PubMedCrossRef
2.
go back to reference Mancuso A, Sternberg CN. New treatments for metastatic kidney cancer. Can J Urol. 2005;12:66.PubMed Mancuso A, Sternberg CN. New treatments for metastatic kidney cancer. Can J Urol. 2005;12:66.PubMed
3.
go back to reference Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, et al. The epidemiology of renal cell carcinoma. Eur Urol. 2011;60(4):e29–36.CrossRef Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, et al. The epidemiology of renal cell carcinoma. Eur Urol. 2011;60(4):e29–36.CrossRef
4.
go back to reference Lawrence TS, Ten Haken RK, Giaccia A. Principles of radiation oncology. Cancer: principles and practice of oncology. 8th ed. Philadelphia: Williams and Wilkins; 2008. Lawrence TS, Ten Haken RK, Giaccia A. Principles of radiation oncology. Cancer: principles and practice of oncology. 8th ed. Philadelphia: Williams and Wilkins; 2008.
5.
6.
go back to reference Lipworth L, Tarone RE, McLaughlin JK. The epidemiology of renal cell carcinoma. J Urol. 2006;176:2353–8.PubMedCrossRef Lipworth L, Tarone RE, McLaughlin JK. The epidemiology of renal cell carcinoma. J Urol. 2006;176:2353–8.PubMedCrossRef
7.
go back to reference Malvezzi M, Arfé A, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2011. Ann Oncol. 2011;22:947.PubMedCrossRef Malvezzi M, Arfé A, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2011. Ann Oncol. 2011;22:947.PubMedCrossRef
8.
go back to reference Ferlay J, Shin HR, Bray F, Parkin DM. Globocan 2008 v1. 2, cancer incidence and mortality worldwide: IARC CancerBase no. 10 (internet). International Agency for Research on Cancer, Lyon, France, 2010. Ferlay J, Shin HR, Bray F, Parkin DM. Globocan 2008 v1. 2, cancer incidence and mortality worldwide: IARC CancerBase no. 10 (internet). International Agency for Research on Cancer, Lyon, France, 2010.
9.
go back to reference Hollenbeak CS, Nikkel LE, Schaefer EW, Alemao E, Ghahramani N, Raman JD. Determinants of medicare all-cause costs among elderly patients with renal cell carcinoma. J Manag Care Pharm. 2011;17:610.PubMed Hollenbeak CS, Nikkel LE, Schaefer EW, Alemao E, Ghahramani N, Raman JD. Determinants of medicare all-cause costs among elderly patients with renal cell carcinoma. J Manag Care Pharm. 2011;17:610.PubMed
10.
go back to reference Humphreys BD. Genetic tracing of the epithelial lineage during mammalian kidney repair. Kidney Int Suppl. 2011;1:83–6.CrossRef Humphreys BD. Genetic tracing of the epithelial lineage during mammalian kidney repair. Kidney Int Suppl. 2011;1:83–6.CrossRef
11.
go back to reference Bodmer D, Van Den Hurk W, van Groningen JJM, Eleveld MJ, Martens GJM, Weterman MAJ, et al. Understanding familial and non-familial renal cell cancer. Hum Mol Genet. 2002;11:2489.PubMedCrossRef Bodmer D, Van Den Hurk W, van Groningen JJM, Eleveld MJ, Martens GJM, Weterman MAJ, et al. Understanding familial and non-familial renal cell cancer. Hum Mol Genet. 2002;11:2489.PubMedCrossRef
12.
go back to reference Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7:245.PubMedCrossRef Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7:245.PubMedCrossRef
13.
go back to reference Nagaprashantha LD, Vatsyayan R, Singhal J, Lelsani P, Prokai L, Awasthi S, et al. 2-Hydroxyflavanone inhibits proliferation, tumor vascularization and promotes normal differentiation in VHL-mutant renal cell carcinoma. Carcinogenesis. 2011;32:568.PubMedCrossRef Nagaprashantha LD, Vatsyayan R, Singhal J, Lelsani P, Prokai L, Awasthi S, et al. 2-Hydroxyflavanone inhibits proliferation, tumor vascularization and promotes normal differentiation in VHL-mutant renal cell carcinoma. Carcinogenesis. 2011;32:568.PubMedCrossRef
14.
go back to reference Cowey CL, Rathmell WK. Using molecular biology to develop drugs renal cell carcinoma. Expert Opin Drug Discov. 2008;3:311–27.PubMedCrossRef Cowey CL, Rathmell WK. Using molecular biology to develop drugs renal cell carcinoma. Expert Opin Drug Discov. 2008;3:311–27.PubMedCrossRef
15.
go back to reference Kaelin WG. The Von Hippel–Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13:680s.PubMedCrossRef Kaelin WG. The Von Hippel–Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13:680s.PubMedCrossRef
16.
go back to reference Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Eng J Med. 2007;356:115.CrossRef Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Eng J Med. 2007;356:115.CrossRef
17.
go back to reference Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Eng J Med. 2007;356:125.CrossRef Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Eng J Med. 2007;356:125.CrossRef
18.
go back to reference Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.PubMedCrossRef Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.PubMedCrossRef
19.
go back to reference Maher ER, Neumann HPH, Richard S. Von Hippel–Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19:617–23.PubMedCrossRef Maher ER, Neumann HPH, Richard S. Von Hippel–Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19:617–23.PubMedCrossRef
20.
go back to reference Maynard MA, Ohh M. Von Hippel–Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol. 2000;24:1–13.CrossRef Maynard MA, Ohh M. Von Hippel–Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol. 2000;24:1–13.CrossRef
21.
go back to reference Collins ET. Intra-ocular growths (two cases, brother and sister, with peculiar vascular new growth, probably retinal, affecting both eyes). Trans Ophthal Soc UK. 1894;14:141–9. Collins ET. Intra-ocular growths (two cases, brother and sister, with peculiar vascular new growth, probably retinal, affecting both eyes). Trans Ophthal Soc UK. 1894;14:141–9.
22.
go back to reference Ev H. Ueber eine sehr seltene erkrankung der nethaut. Albrecht von Graef Arch Ophthalmol. 1904;59:83–106.CrossRef Ev H. Ueber eine sehr seltene erkrankung der nethaut. Albrecht von Graef Arch Ophthalmol. 1904;59:83–106.CrossRef
23.
go back to reference Couch V, Lindor NM, Karnes PS, Michels VV. Von Hippel–Lindau disease. Mayo Clin. 2000;75:265.CrossRef Couch V, Lindor NM, Karnes PS, Michels VV. Von Hippel–Lindau disease. Mayo Clin. 2000;75:265.CrossRef
24.
25.
go back to reference Cowey CL, Rathmell WK. VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr Oncol Rep. 2009;11:94–101.PubMedCrossRef Cowey CL, Rathmell WK. VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr Oncol Rep. 2009;11:94–101.PubMedCrossRef
26.
go back to reference McNeill A, Rattenberry E, Barber R, Killick P, MacDonald F, Maher ER. Genotype–phenotype correlations in vhl exon deletions. Am J Med Genet A. 2009;149:2147–51. McNeill A, Rattenberry E, Barber R, Killick P, MacDonald F, Maher ER. Genotype–phenotype correlations in vhl exon deletions. Am J Med Genet A. 2009;149:2147–51.
27.
go back to reference Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P, Walther MC, et al. Improved detection of germline mutations in the Von Hippel–Lindau disease tumor suppressor gene. Hum Mutat. 1998;12:417–23.PubMedCrossRef Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P, Walther MC, et al. Improved detection of germline mutations in the Von Hippel–Lindau disease tumor suppressor gene. Hum Mutat. 1998;12:417–23.PubMedCrossRef
28.
go back to reference Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro D, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329.PubMedCrossRef Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro D, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329.PubMedCrossRef
29.
go back to reference Wind JJ, Lonser RR. Management of Von Hippel–Lindau disease-associated CNS lesions. Expert Rev Neurother. 2011;11:1433–41.PubMedCrossRef Wind JJ, Lonser RR. Management of Von Hippel–Lindau disease-associated CNS lesions. Expert Rev Neurother. 2011;11:1433–41.PubMedCrossRef
30.
go back to reference Bhattacharjee H, Deka H, Deka S, Barman MJ, Mazumdar M, Medhi J. Verteporfin photodynamic therapy of retinal capillary hemangioblastoma in Von Hippel–Lindau disease. Indian J Ophthalmol. 2010;58:73.PubMedCrossRef Bhattacharjee H, Deka H, Deka S, Barman MJ, Mazumdar M, Medhi J. Verteporfin photodynamic therapy of retinal capillary hemangioblastoma in Von Hippel–Lindau disease. Indian J Ophthalmol. 2010;58:73.PubMedCrossRef
31.
go back to reference Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM, et al. Pancreatic involvement in Von Hippel–Lindau disease. Gastroenterology. 2000;119:1087–95.PubMedCrossRef Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM, et al. Pancreatic involvement in Von Hippel–Lindau disease. Gastroenterology. 2000;119:1087–95.PubMedCrossRef
32.
go back to reference Schimke RN, Collins DL, Rothberg PG. Functioning carotid paraganglioma in the Von Hippel–Lindau syndrome. Am J Med Genet. 1998;80:533–4.PubMedCrossRef Schimke RN, Collins DL, Rothberg PG. Functioning carotid paraganglioma in the Von Hippel–Lindau syndrome. Am J Med Genet. 1998;80:533–4.PubMedCrossRef
33.
go back to reference Matin SF, Ahrar K, Wood CG, Daniels M, Jonasch E. Patterns of intervention for renal lesions in Von Hippel–Lindau disease. BJU Int. 2008;102:940–5.PubMedCrossRef Matin SF, Ahrar K, Wood CG, Daniels M, Jonasch E. Patterns of intervention for renal lesions in Von Hippel–Lindau disease. BJU Int. 2008;102:940–5.PubMedCrossRef
34.
go back to reference Young AC, Craven RA, Cohen D, Taylor C, Booth C, Harnden P, et al. Analysis of vhl gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin Cancer Res. 2009;15:7582.PubMedCrossRef Young AC, Craven RA, Cohen D, Taylor C, Booth C, Harnden P, et al. Analysis of vhl gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin Cancer Res. 2009;15:7582.PubMedCrossRef
35.
go back to reference Kondo K, Yao M, Yoshida M, Kishida T, Shuin T, Miura T, et al. Comprehensive mutational analysis of the vhl gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosome Canc. 2002;34:58–68.CrossRef Kondo K, Yao M, Yoshida M, Kishida T, Shuin T, Miura T, et al. Comprehensive mutational analysis of the vhl gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosome Canc. 2002;34:58–68.CrossRef
36.
go back to reference Yuen JSP. Molecular targeted therapy in advanced renal cell carcinoma: a review of its recent past and a glimpse into the near future. Indian J Urol. 2009;25:427.PubMedCrossRef Yuen JSP. Molecular targeted therapy in advanced renal cell carcinoma: a review of its recent past and a glimpse into the near future. Indian J Urol. 2009;25:427.PubMedCrossRef
37.
go back to reference Ivan M, KaelinJr WG. The Von Hippel–Lindau tumor suppressor protein. Curr Opin Genet Dev. 2001;11:27–34.PubMedCrossRef Ivan M, KaelinJr WG. The Von Hippel–Lindau tumor suppressor protein. Curr Opin Genet Dev. 2001;11:27–34.PubMedCrossRef
38.
go back to reference Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the Von Hippel–Lindau tumour suppressor protein pvhl. Nat Cell Biol. 2003;5:64–70.PubMedCrossRef Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the Von Hippel–Lindau tumour suppressor protein pvhl. Nat Cell Biol. 2003;5:64–70.PubMedCrossRef
39.
go back to reference Okuda H, Hirai S, Takaki Y, Kamada M, Baba M, Sakai N, et al. Direct interaction of the [beta]-domain of VHL tumor suppressor protein with the regulatory domain of atypical pkc isotypes. Biochem Biophys Res Commun. 1999;263:491–7.PubMedCrossRef Okuda H, Hirai S, Takaki Y, Kamada M, Baba M, Sakai N, et al. Direct interaction of the [beta]-domain of VHL tumor suppressor protein with the regulatory domain of atypical pkc isotypes. Biochem Biophys Res Commun. 1999;263:491–7.PubMedCrossRef
40.
go back to reference Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. The rbx1 subunit of scf and VHL e3 ubiquitin ligase activates rub1 modification of cullins cdc53 and cul2. Genes Dev. 1999;13:2928.PubMedCrossRef Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. The rbx1 subunit of scf and VHL e3 ubiquitin ligase activates rub1 modification of cullins cdc53 and cul2. Genes Dev. 1999;13:2928.PubMedCrossRef
41.
go back to reference Sumara I, Maerki S, Peter M. E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 2008;18:84–94.PubMedCrossRef Sumara I, Maerki S, Peter M. E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 2008;18:84–94.PubMedCrossRef
42.
go back to reference Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, et al. Hypoxia inducible factor- binding and ubiquitylation by the Von Hippel–Lindau tumor suppressor protein. J Biol Chem. 2000;275:25733.PubMedCrossRef Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, et al. Hypoxia inducible factor- binding and ubiquitylation by the Von Hippel–Lindau tumor suppressor protein. J Biol Chem. 2000;275:25733.PubMedCrossRef
43.
go back to reference Zbar B: VHL family alliance. Basic facts about VHL Accessed 25 Feb 2011. Zbar B: VHL family alliance. Basic facts about VHL Accessed 25 Feb 2011.
44.
go back to reference Pause A, Lee S, Lonergan KM, Klausner RD. The Von Hippel–Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci. 1998;95:993.PubMedCrossRef Pause A, Lee S, Lonergan KM, Klausner RD. The Von Hippel–Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci. 1998;95:993.PubMedCrossRef
45.
go back to reference Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, et al. The Von Hippel–Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell. 1998;1:959–68.PubMedCrossRef Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, et al. The Von Hippel–Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell. 1998;1:959–68.PubMedCrossRef
46.
go back to reference Frew IJ, Krek W. Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol. 2007;19:685–90.PubMedCrossRef Frew IJ, Krek W. Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol. 2007;19:685–90.PubMedCrossRef
47.
go back to reference Roe JS, Youn HD. Extra view the positive regulation of p53 by the tumor suppressor VHL. Cell Cycle. 2006;5:2054–6.PubMedCrossRef Roe JS, Youn HD. Extra view the positive regulation of p53 by the tumor suppressor VHL. Cell Cycle. 2006;5:2054–6.PubMedCrossRef
48.
go back to reference Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, et al. Contrasting effects on hif-1 regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in Von Hippel–Lindau disease. Hum Mol Genet. 2001;10:1029.PubMedCrossRef Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, et al. Contrasting effects on hif-1 regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in Von Hippel–Lindau disease. Hum Mol Genet. 2001;10:1029.PubMedCrossRef
49.
go back to reference Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin Jr WG. Von Hippel–Lindau protein mutants linked to type 2c VHL disease preserve the ability to downregulate hif. Hum Mol Genet. 2001;10:1019.PubMedCrossRef Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin Jr WG. Von Hippel–Lindau protein mutants linked to type 2c VHL disease preserve the ability to downregulate hif. Hum Mol Genet. 2001;10:1019.PubMedCrossRef
50.
go back to reference Lieubeau-Teillet B, Rak J, Jothy S, Iliopoulos O, Kaelin W, Kerbel RS. Von Hippel–Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res. 1998;58:4957.PubMed Lieubeau-Teillet B, Rak J, Jothy S, Iliopoulos O, Kaelin W, Kerbel RS. Von Hippel–Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res. 1998;58:4957.PubMed
51.
go back to reference Davidowitz EJ, Schoenfeld AR, Burk RD. VHL induces renal cell differentiation and growth arrest through integration of cell–cell and cell–extracellular matrix signaling. Mol Cell Biol. 2001;21:865.PubMedCrossRef Davidowitz EJ, Schoenfeld AR, Burk RD. VHL induces renal cell differentiation and growth arrest through integration of cell–cell and cell–extracellular matrix signaling. Mol Cell Biol. 2001;21:865.PubMedCrossRef
52.
go back to reference Stickle NH, Chung J, Klco JM, Hill RP, Kaelin Jr WG, Ohh M. PVHL modification by nedd8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol. 2004;24:3251.PubMedCrossRef Stickle NH, Chung J, Klco JM, Hill RP, Kaelin Jr WG, Ohh M. PVHL modification by nedd8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol. 2004;24:3251.PubMedCrossRef
53.
go back to reference Kaelin Jr WG. Von Hippel–Lindau disease. Annu Rev Pathol Mech Dis. 2007;2:145–73.CrossRef Kaelin Jr WG. Von Hippel–Lindau disease. Annu Rev Pathol Mech Dis. 2007;2:145–73.CrossRef
54.
go back to reference To KKW, Huang LE. Suppression of hypoxia-inducible factor 1 (HIF-1) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem. 2005;280:38102.PubMedCrossRef To KKW, Huang LE. Suppression of hypoxia-inducible factor 1 (HIF-1) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem. 2005;280:38102.PubMedCrossRef
55.
go back to reference Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1 in normoxia. EMBO J. 2003;22:4082–90.PubMedCrossRef Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1 in normoxia. EMBO J. 2003;22:4082–90.PubMedCrossRef
56.
go back to reference Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458.PubMedCrossRef Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458.PubMedCrossRef
57.
go back to reference Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, et al. Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J. 2004;381:761.PubMedCrossRef Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, et al. Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J. 2004;381:761.PubMedCrossRef
58.
go back to reference Aprelikova O, Chandramouli GVR, Wood M, Vasselli JR, Riss J, Maranchie JK, et al. Regulation of HIF prolyl hydroxylases by hypoxia inducible factors. J Cell Biochem. 2004;92:491–501.PubMedCrossRef Aprelikova O, Chandramouli GVR, Wood M, Vasselli JR, Riss J, Maranchie JK, et al. Regulation of HIF prolyl hydroxylases by hypoxia inducible factors. J Cell Biochem. 2004;92:491–501.PubMedCrossRef
59.
60.
go back to reference Kleymenova E, Everitt JI, Pluta L, Portis M, Gnarra JR, Walker CL. Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis in VHL knockout mice. Carcinogenesis. 2004;25:309.PubMedCrossRef Kleymenova E, Everitt JI, Pluta L, Portis M, Gnarra JR, Walker CL. Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis in VHL knockout mice. Carcinogenesis. 2004;25:309.PubMedCrossRef
61.
go back to reference Haase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers with targeted inactivation of the Von Hippel–Lindau tumor suppressor. Proc Natl Acad Sci. 2001;98:1583.PubMedCrossRef Haase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers with targeted inactivation of the Von Hippel–Lindau tumor suppressor. Proc Natl Acad Sci. 2001;98:1583.PubMedCrossRef
62.
go back to reference Chen L, Uchida K, Endler A, Shibasaki F. Mammalian tumor suppressor int6 specifically targets hypoxia inducible factor 2 for degradation by hypoxia-and pVHL-independent regulation. J Biol Chem. 2007;282:12707.PubMedCrossRef Chen L, Uchida K, Endler A, Shibasaki F. Mammalian tumor suppressor int6 specifically targets hypoxia inducible factor 2 for degradation by hypoxia-and pVHL-independent regulation. J Biol Chem. 2007;282:12707.PubMedCrossRef
63.
go back to reference Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin Jr WG. Inhibition of HIF is necessary for tumor suppression by the Von Hippel–Lindau protein. Cancer Cell. 2002;1:237–46.PubMedCrossRef Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin Jr WG. Inhibition of HIF is necessary for tumor suppression by the Von Hippel–Lindau protein. Cancer Cell. 2002;1:237–46.PubMedCrossRef
64.
go back to reference Li L, Lin X, Shoemaker AR, Albert DH, Fesik SW, Shen Y. Hypoxia-inducible factor-1 inhibition in combination with temozolomide treatment exhibits robust antitumor efficacy in vivo. Clin Cancer Res. 2006;12:4747.PubMedCrossRef Li L, Lin X, Shoemaker AR, Albert DH, Fesik SW, Shen Y. Hypoxia-inducible factor-1 inhibition in combination with temozolomide treatment exhibits robust antitumor efficacy in vivo. Clin Cancer Res. 2006;12:4747.PubMedCrossRef
65.
go back to reference Wang R, Zhou S, Li S. Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem. 2011;18:3168–89.PubMedCrossRef Wang R, Zhou S, Li S. Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem. 2011;18:3168–89.PubMedCrossRef
66.
go back to reference Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin Jr WG. TSC2 regulates VEGF through mTOR-dependent and-independent pathways. Cancer Cell. 2003;4:147–58.PubMedCrossRef Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin Jr WG. TSC2 regulates VEGF through mTOR-dependent and-independent pathways. Cancer Cell. 2003;4:147–58.PubMedCrossRef
Metadata
Title
Role of VHL gene mutation in human renal cell carcinoma
Authors
Wani Arjumand
Sarwat Sultana
Publication date
01-02-2012
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 1/2012
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-011-0257-3

Other articles of this Issue 1/2012

Tumor Biology 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine