Skip to main content
Top
Published in: BMC Cancer 1/2004

Open Access 01-12-2004 | Research article

Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin

Authors: Raffaella Ravizza, Marzia B Gariboldi, Laura Passarelli, Elena Monti

Published in: BMC Cancer | Issue 1/2004

Login to get access

Abstract

Background

Colon adenocarcinomas are refractory to a number of widely used anticancer agents. Multifactorial mechanisms have been implicated in this intrinsically resistant phenotype, including deregulation of cell death pathways. In this regard, the p53 protein has a well established role in the control of tumor cell response to DNA damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. The present study investigates the role of the p53/p21 system in the response of human colon carcinoma cells to treatment with the cytotoxic agent doxorubicin (DOX) and the possibility to modify the therapeutic index of DOX by modulation of p53 and/or p21 protein levels.

Methods

The relationship between p53 and p21 protein levels and the cytotoxic effect of DOX was investigated, by MTT assay and western blot analysis, in HCT116 (p53-positive) and HT29 (p53-negative) colon cancer cells. We then assessed the effects of DOX in two isogenic cell lines derived from HCT116 by abrogating the expression and/or function of p53 and p21 (HCT116-E6 and HCT116 p21-/-, respectively). Finally, we evaluated the effect of pre-treatment with the piperidine nitroxide Tempol (TPL), an agent that was reported to induce p21 expression irrespective of p53 status, on the cytotoxicity of DOX in the four cell lines. Comparisons of IC50 values and apoptotic cell percentages were performed by ANOVA and Bonferroni's test for independent samples. C.I. calculations were performed by the combination Index method.

Results

Our results indicate that, in the colon carcinoma cell lines tested, sensitivity to DOX is associated with p21 upregulation upon drug exposure, and DOX cytotoxicity is potentiated by pre-treatment with TPL, but only in those cell lines in which p21 can be upregulated.

Conclusions

p21 induction may significantly contribute to the response of colon adenocarcinomas cells to DOX treatment; and small molecules that can exploit p53-independent pathways for p21 induction, such as TPL, may find a place in chemotherapeutic protocols for the clinical management of colorectal cancer, where p53 function is often lost, due to genetic or epigenetic defects or to post-transcriptional inactivating mechanisms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Bray F, Pisani P, Parkin DM: GLOBOCAN 2000: Cancer Incidence, Mortality and Prevalence Worldwide. 2001, IARC CancerBase Lyon, IARCPress, 5: Ferlay J, Bray F, Pisani P, Parkin DM: GLOBOCAN 2000: Cancer Incidence, Mortality and Prevalence Worldwide. 2001, IARC CancerBase Lyon, IARCPress, 5:
2.
go back to reference Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 2002, 53: 615-627. 10.1146/annurev.med.53.082901.103929.CrossRefPubMed Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 2002, 53: 615-627. 10.1146/annurev.med.53.082901.103929.CrossRefPubMed
3.
go back to reference Shah AM, Schwartz GK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 2001, 7: 2168-2181.PubMed Shah AM, Schwartz GK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 2001, 7: 2168-2181.PubMed
4.
go back to reference Ferreira CG, Epping M, Kruyt FA, Giaccone G: Apoptosis: target of cancer therapy. Clin Cancer Res. 2002, 8: 2024-2034.PubMed Ferreira CG, Epping M, Kruyt FA, Giaccone G: Apoptosis: target of cancer therapy. Clin Cancer Res. 2002, 8: 2024-2034.PubMed
5.
go back to reference Brown JM, Wilson G: Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us?. Cancer Biol Ther. 2003, 2: 477-490.CrossRefPubMed Brown JM, Wilson G: Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us?. Cancer Biol Ther. 2003, 2: 477-490.CrossRefPubMed
6.
go back to reference Green DR: Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000, 102: 1-4. 10.1016/S0092-8674(00)00003-9.CrossRefPubMed Green DR: Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000, 102: 1-4. 10.1016/S0092-8674(00)00003-9.CrossRefPubMed
7.
go back to reference Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002, 108: 153-164. 10.1016/S0092-8674(02)00625-6.CrossRefPubMed Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002, 108: 153-164. 10.1016/S0092-8674(02)00625-6.CrossRefPubMed
8.
go back to reference Wang X: The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15: 2922-2933.PubMed Wang X: The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15: 2922-2933.PubMed
9.
10.
go back to reference Vousden K, Lu X: Live or let die: the cell's response to p53. Nature Rev Cancer. 2002, 2: 594-604. 10.1038/nrc864.CrossRef Vousden K, Lu X: Live or let die: the cell's response to p53. Nature Rev Cancer. 2002, 2: 594-604. 10.1038/nrc864.CrossRef
11.
go back to reference Wallace-Brodeur RR, Lowe SW: Clinical implications of p53 mutations. Cell Mol Life Sci. 1999, 55: 64-75. 10.1007/s000180050270.CrossRefPubMed Wallace-Brodeur RR, Lowe SW: Clinical implications of p53 mutations. Cell Mol Life Sci. 1999, 55: 64-75. 10.1007/s000180050270.CrossRefPubMed
12.
go back to reference Herr I, Debatin MK: Cellular stress response and apoptosis in cancer therapy. Blood. 2001, 98: 2603-2614. 10.1182/blood.V98.9.2603.CrossRefPubMed Herr I, Debatin MK: Cellular stress response and apoptosis in cancer therapy. Blood. 2001, 98: 2603-2614. 10.1182/blood.V98.9.2603.CrossRefPubMed
13.
go back to reference Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999, 104: 263-269.CrossRefPubMedPubMedCentral Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999, 104: 263-269.CrossRefPubMedPubMedCentral
14.
go back to reference Liu X, Bishop WR, Liu M: Differential effects of cell cycle regulatory protein p21WAF1/Cip1 on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updates. 2003, 6: 183-195. 10.1016/S1368-7646(03)00044-X.CrossRef Liu X, Bishop WR, Liu M: Differential effects of cell cycle regulatory protein p21WAF1/Cip1 on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updates. 2003, 6: 183-195. 10.1016/S1368-7646(03)00044-X.CrossRef
15.
go back to reference Gariboldi MB, Lucchi S, Caserini C, Supino R, Oliva C, Monti E: Antiproliferative effect of the piperidine nitroxide TEMPOL on neoplastic and nonneoplastic mammalian cell lines. Free Rad Biol Med. 1998, 24: 913-923. 10.1016/S0891-5849(97)00372-9.CrossRefPubMed Gariboldi MB, Lucchi S, Caserini C, Supino R, Oliva C, Monti E: Antiproliferative effect of the piperidine nitroxide TEMPOL on neoplastic and nonneoplastic mammalian cell lines. Free Rad Biol Med. 1998, 24: 913-923. 10.1016/S0891-5849(97)00372-9.CrossRefPubMed
16.
go back to reference Gariboldi MB, Rimoldi V, Supino R, Favini E, Monti E: The nitroxide TEMPOL induces oxidative stress, p21 WAF1/CIP1, and cell death in HL60 cells. Free Rad Biol Med. 2000, 29: 633-641. 10.1016/S0891-5849(00)00347-6.CrossRefPubMed Gariboldi MB, Rimoldi V, Supino R, Favini E, Monti E: The nitroxide TEMPOL induces oxidative stress, p21 WAF1/CIP1, and cell death in HL60 cells. Free Rad Biol Med. 2000, 29: 633-641. 10.1016/S0891-5849(00)00347-6.CrossRefPubMed
17.
go back to reference Supino R: MTT assays. In Methods in molecular biology: in vitro toxicity testing protocols. Edited by: O'Hare SM, Atterwill CK. 1998, Totowa, NJ: Humana Press, 43: 137-149. Supino R: MTT assays. In Methods in molecular biology: in vitro toxicity testing protocols. Edited by: O'Hare SM, Atterwill CK. 1998, Totowa, NJ: Humana Press, 43: 137-149.
18.
go back to reference Chou T-C, Talalay P: Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984, 22: 27-55. 10.1016/0065-2571(84)90007-4.CrossRefPubMed Chou T-C, Talalay P: Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984, 22: 27-55. 10.1016/0065-2571(84)90007-4.CrossRefPubMed
19.
go back to reference Yanez RJ, Porter AC: Influence of DNA delivery method on gene targeting frequencies in human cells. Somat Cell Mol Genet. 1999, 25: 27-31. 10.1023/B:SCAM.0000007137.28557.73.CrossRefPubMed Yanez RJ, Porter AC: Influence of DNA delivery method on gene targeting frequencies in human cells. Somat Cell Mol Genet. 1999, 25: 27-31. 10.1023/B:SCAM.0000007137.28557.73.CrossRefPubMed
20.
go back to reference Kaeser MD, Pebernard S, Iggo RD: Regulation of p53 stability and function in HCT116 colon cancer cells. J Biol Chem. 2004, 279: 7598-7605. 10.1074/jbc.M311732200.CrossRefPubMed Kaeser MD, Pebernard S, Iggo RD: Regulation of p53 stability and function in HCT116 colon cancer cells. J Biol Chem. 2004, 279: 7598-7605. 10.1074/jbc.M311732200.CrossRefPubMed
21.
go back to reference Kurz EU, Douglas P, Lees-Miller SP: Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem. 2004, Oct 14. Kurz EU, Douglas P, Lees-Miller SP: Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem. 2004, Oct 14.
22.
go back to reference Take Y, Kumano M, Teraoka H, Nishimura S, Okuyama A: DNA-dependent protein kinase inhibitor (OK-1035) suppresses p21 expression in HCT116 cells containing wild-type p53 induced by adriamycin. Biochem Biophys Res Commun. 1996, 221: 207-212. 10.1006/bbrc.1996.0575.CrossRefPubMed Take Y, Kumano M, Teraoka H, Nishimura S, Okuyama A: DNA-dependent protein kinase inhibitor (OK-1035) suppresses p21 expression in HCT116 cells containing wild-type p53 induced by adriamycin. Biochem Biophys Res Commun. 1996, 221: 207-212. 10.1006/bbrc.1996.0575.CrossRefPubMed
23.
go back to reference Gartel AL, Tyner AL: Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res. 1999, 246: 280-289. 10.1006/excr.1998.4319.CrossRefPubMed Gartel AL, Tyner AL: Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res. 1999, 246: 280-289. 10.1006/excr.1998.4319.CrossRefPubMed
24.
go back to reference Dotto GP: p21(WAF1/Cip1): more than a break to the cell cycle?. Biochim Biophys Acta. 2000, 1471: M43-M56. 10.1016/S0304-419X(00)00019-6.PubMed Dotto GP: p21(WAF1/Cip1): more than a break to the cell cycle?. Biochim Biophys Acta. 2000, 1471: M43-M56. 10.1016/S0304-419X(00)00019-6.PubMed
25.
go back to reference Gartel AL, Tyner AL: The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther. 2002, 1: 639-649.PubMed Gartel AL, Tyner AL: The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther. 2002, 1: 639-649.PubMed
26.
go back to reference Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ: p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene. 1997, 14: 929-935. 10.1038/sj.onc.1200897.CrossRefPubMed Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ: p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene. 1997, 14: 929-935. 10.1038/sj.onc.1200897.CrossRefPubMed
27.
go back to reference Javelaud D, Besancon F: Inactivation of p21WAF1 sensitizes cells to apoptosis via an increase of both p14ARF and p53 levels and an alteration of the Bax/Bcl-2 ratio. J Biol Chem. 2002, 277: 37949-37954. 10.1074/jbc.M204497200.CrossRefPubMed Javelaud D, Besancon F: Inactivation of p21WAF1 sensitizes cells to apoptosis via an increase of both p14ARF and p53 levels and an alteration of the Bax/Bcl-2 ratio. J Biol Chem. 2002, 277: 37949-37954. 10.1074/jbc.M204497200.CrossRefPubMed
28.
go back to reference Martinez LA, Yang J, Vazquez ES, Rodriguez-Vargas M, del C, Olive M, Hsieh JT, Logothetis CJ, Navone NM: p21 modulates threshold of apoptosis induced by DNA-damage and growth factor withdrawal in prostate cancer cells. Carcinogenesis. 2002, 23: 1289-1296. 10.1093/carcin/23.8.1289.CrossRefPubMed Martinez LA, Yang J, Vazquez ES, Rodriguez-Vargas M, del C, Olive M, Hsieh JT, Logothetis CJ, Navone NM: p21 modulates threshold of apoptosis induced by DNA-damage and growth factor withdrawal in prostate cancer cells. Carcinogenesis. 2002, 23: 1289-1296. 10.1093/carcin/23.8.1289.CrossRefPubMed
29.
go back to reference Mahyar-Roemer M, Roemer K: p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene. 2001, 20: 3387-3398. 10.1038/sj.onc.1204440.CrossRefPubMed Mahyar-Roemer M, Roemer K: p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene. 2001, 20: 3387-3398. 10.1038/sj.onc.1204440.CrossRefPubMed
30.
go back to reference Blagosklonny MV, Robey R, Bates S, Fojo T: Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest. 2000, 105: 533-539.CrossRefPubMedPubMedCentral Blagosklonny MV, Robey R, Bates S, Fojo T: Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest. 2000, 105: 533-539.CrossRefPubMedPubMedCentral
31.
go back to reference Chopin V, Toillon RA, Jouy N, Le Bourhis X: p21(WAF1/CIP1) is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene. 2004, 23: 21-29. 10.1038/sj.onc.1207020.CrossRefPubMed Chopin V, Toillon RA, Jouy N, Le Bourhis X: p21(WAF1/CIP1) is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene. 2004, 23: 21-29. 10.1038/sj.onc.1207020.CrossRefPubMed
32.
go back to reference Agrawal S, Agarwal ML, Chatterjee-Kishore M, Stark GR, Chisolm GM: Stat1-dependent, p53-independent expression of p21(waf1) modulates oxysterol-induced apoptosis. Mol Cell Biol. 2002, 22: 1981-1992. 10.1128/MCB.22.7.1981-1992.2002.CrossRefPubMedPubMedCentral Agrawal S, Agarwal ML, Chatterjee-Kishore M, Stark GR, Chisolm GM: Stat1-dependent, p53-independent expression of p21(waf1) modulates oxysterol-induced apoptosis. Mol Cell Biol. 2002, 22: 1981-1992. 10.1128/MCB.22.7.1981-1992.2002.CrossRefPubMedPubMedCentral
33.
go back to reference Wu Q, Kirschmeier P, Hockenberry T, Yang TY, Brassard DL, Wang L, McClanahan T, Black S, Rizzi G, Musco ML, Mirza A, Liu S: Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J Biol Chem. 2002, 277: 36329-36337. 10.1074/jbc.M204962200.CrossRefPubMed Wu Q, Kirschmeier P, Hockenberry T, Yang TY, Brassard DL, Wang L, McClanahan T, Black S, Rizzi G, Musco ML, Mirza A, Liu S: Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J Biol Chem. 2002, 277: 36329-36337. 10.1074/jbc.M204962200.CrossRefPubMed
34.
go back to reference Ahmad N, Adhami VM, Afaq F, Feyes DK, Mukhtar H: Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res. 2001, 7: 1466-73.PubMed Ahmad N, Adhami VM, Afaq F, Feyes DK, Mukhtar H: Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res. 2001, 7: 1466-73.PubMed
35.
go back to reference Fulda S, Debatin KM: Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res. 2004, 64: 337-346.CrossRefPubMed Fulda S, Debatin KM: Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res. 2004, 64: 337-346.CrossRefPubMed
36.
go back to reference Satou M, Aizawa S, Hayakari M, Ookawa K, Tsuchida S: Enhanced sensitivity to cis-diamminedichloroplatinum(II) of a human carcinoma cell line with mutated p53 gene by cyclin-dependent kinase inhibitor p21(WAF1) expression. Cancer Sci. 2003, 94: 286-291.CrossRefPubMed Satou M, Aizawa S, Hayakari M, Ookawa K, Tsuchida S: Enhanced sensitivity to cis-diamminedichloroplatinum(II) of a human carcinoma cell line with mutated p53 gene by cyclin-dependent kinase inhibitor p21(WAF1) expression. Cancer Sci. 2003, 94: 286-291.CrossRefPubMed
37.
go back to reference Chinery R, Brockman JA, Peeler MO, Shyr Y, Beauchamp RD, Coffey RJ: Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbeta. Nature Med. 1997, 3: 1233-1241. 10.1038/nm1197-1233.CrossRefPubMed Chinery R, Brockman JA, Peeler MO, Shyr Y, Beauchamp RD, Coffey RJ: Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbeta. Nature Med. 1997, 3: 1233-1241. 10.1038/nm1197-1233.CrossRefPubMed
38.
go back to reference Liu S, Bishop WR, Liu M: Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat. 2003, 6: 183-195. 10.1016/S1368-7646(03)00044-X.CrossRefPubMed Liu S, Bishop WR, Liu M: Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat. 2003, 6: 183-195. 10.1016/S1368-7646(03)00044-X.CrossRefPubMed
39.
go back to reference Roninson IB: Tumor cell senescence in cancer treatment. Cancer Res. 2003, 63: 2705-2715.PubMed Roninson IB: Tumor cell senescence in cancer treatment. Cancer Res. 2003, 63: 2705-2715.PubMed
40.
go back to reference te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP: DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002, 62: 1876-1883.PubMed te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP: DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002, 62: 1876-1883.PubMed
41.
go back to reference Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB: Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci U S A. 2002, 99: 389-394. 10.1073/pnas.012602599.CrossRefPubMed Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB: Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci U S A. 2002, 99: 389-394. 10.1073/pnas.012602599.CrossRefPubMed
42.
go back to reference Chang BD, Broude EV, Fang J, Kalinichenko TV, Abdryashitov R, Poole JC, Roninson IB: p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene. 2000, 19: 2165-2170. 10.1038/sj.onc.1203573.CrossRefPubMed Chang BD, Broude EV, Fang J, Kalinichenko TV, Abdryashitov R, Poole JC, Roninson IB: p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene. 2000, 19: 2165-2170. 10.1038/sj.onc.1203573.CrossRefPubMed
43.
go back to reference Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB: Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 1999, 18: 4808-4818. 10.1038/sj.onc.1203078.CrossRefPubMed Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB: Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 1999, 18: 4808-4818. 10.1038/sj.onc.1203078.CrossRefPubMed
Metadata
Title
Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin
Authors
Raffaella Ravizza
Marzia B Gariboldi
Laura Passarelli
Elena Monti
Publication date
01-12-2004
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2004
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-4-92

Other articles of this Issue 1/2004

BMC Cancer 1/2004 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine