Skip to main content
Top
Published in: Diabetology International 3/2015

01-09-2015 | Commentary

Role of SIRT7 in hepatic lipid metabolism

Authors: Kazuya Yamagata, Mohammed Fazlul Karim, Yoshifumi Sato, Tatsuya Yoshizawa

Published in: Diabetology International | Issue 3/2015

Login to get access

Excerpt

Sirtuins are evolutionarily conserved enzymes that regulate a wide variety of biological processes, such as aging, genomic stability, tumorigenesis, and metabolism [1]. To date, seven sirtuins have been identified in mammals (SIRT1–SIRT7), which share a highly conserved NAD+-binding and catalytic core domain, but have distinct flanking N- and C-terminal domains. The divergent N- and C-termini of sirtuins are responsible for the different functions and subcellular localizations of these enzymes. Although sirtuins were originally described as NAD+-dependent histone deacetylases, these enzymes are now known to act not only on histones, but also on numerous transcription factors and enzymes. SIRT1 controls the acetylation of proliferator-activated receptor-γ co-activator 1α (PGC1α), p53, and forkhead box O, among other targets, whereas SIRT3 is a major deacetylase in mitochondria [2, 3]. In addition, a few sirtuins have either weak or undetectable deacetylase activity. For example, SIRT4 is reported to act as an ADP-ribosyltransferase [4], and SIRT5 has both demalonylase and desuccinylase activities [5]. SIRT6 has been shown to deacetylate acetylated lysine 9 of histone H3 (H3K9Ac) and was also recently reported to preferentially hydrolyze long-chain fatty acyl groups on acylated protein targets [6]. …
Literature
1.
go back to reference Guarenete L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000;14:1201–6. Guarenete L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000;14:1201–6.
2.
go back to reference Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.CrossRefPubMed Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.CrossRefPubMed
4.
go back to reference Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126:941–54.CrossRefPubMed Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126:941–54.CrossRefPubMed
5.
go back to reference Du J, Zhou Y, Su X, Yu J, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334:806–9.PubMedCentralCrossRefPubMed Du J, Zhou Y, Su X, Yu J, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334:806–9.PubMedCentralCrossRefPubMed
6.
go back to reference Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496:110–3.PubMedCentralCrossRefPubMed Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496:110–3.PubMedCentralCrossRefPubMed
7.
go back to reference Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20:1075–80.PubMedCentralCrossRefPubMed Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20:1075–80.PubMedCentralCrossRefPubMed
8.
go back to reference Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase SIRT2. Nat Struct Biol. 2001;8:621–5.CrossRefPubMed Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase SIRT2. Nat Struct Biol. 2001;8:621–5.CrossRefPubMed
9.
go back to reference Kiran S, Chatterjee N, Singh S, Kaul SC, Wadhwa R, Ramakrishna G. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 2013;280:3451–66.CrossRefPubMed Kiran S, Chatterjee N, Singh S, Kaul SC, Wadhwa R, Ramakrishna G. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 2013;280:3451–66.CrossRefPubMed
10.
go back to reference Grob A, Roussel P, Wright JE, McStay B, Hernandez-Verdun D, Sirri V. Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci. 2009;122:489–98.PubMedCentralCrossRefPubMed Grob A, Roussel P, Wright JE, McStay B, Hernandez-Verdun D, Sirri V. Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci. 2009;122:489–98.PubMedCentralCrossRefPubMed
11.
go back to reference Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol Cell. 2013;52:303–13.CrossRefPubMed Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol Cell. 2013;52:303–13.CrossRefPubMed
12.
go back to reference Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487:114–8.PubMedCentralPubMed Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487:114–8.PubMedCentralPubMed
13.
go back to reference Karim MF, Yoshizawa T, Sato Y, Sawa T, Tomizawa K, Akaike T, Yamagata K. Inhibition of H3K18 deacetylation of Sirt7 by Myb-binding protein 1a (Mybbp1a). Biochem Biophys Res Commun. 2013;441:157–63.CrossRefPubMed Karim MF, Yoshizawa T, Sato Y, Sawa T, Tomizawa K, Akaike T, Yamagata K. Inhibition of H3K18 deacetylation of Sirt7 by Myb-binding protein 1a (Mybbp1a). Biochem Biophys Res Commun. 2013;441:157–63.CrossRefPubMed
14.
go back to reference Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.PubMedCentralCrossRefPubMed Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.PubMedCentralCrossRefPubMed
15.
go back to reference Hirschey MD, Shimazu T, Goetzman E, Jing E, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, et al. SIRT3 regulates fatty acid oxidation via reversible enzyme deacetylation. Nature. 2010;464:121–5.PubMedCentralCrossRefPubMed Hirschey MD, Shimazu T, Goetzman E, Jing E, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, et al. SIRT3 regulates fatty acid oxidation via reversible enzyme deacetylation. Nature. 2010;464:121–5.PubMedCentralCrossRefPubMed
16.
go back to reference Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, et al. Hepatic specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12:224–36.PubMedCentralCrossRefPubMed Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, et al. Hepatic specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12:224–36.PubMedCentralCrossRefPubMed
17.
go back to reference Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K, Fukuda T, Go C, Tasaki M, Uchimura K, Kadomatsu T, Tian Z, Smolka C, Sawa T, Takeya M, Tomizawa K, Ando Y, Araki E, Akaike T, Braun T, Oike Y, Bober E, Yamagata K. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 2014;19:712–21.CrossRefPubMed Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K, Fukuda T, Go C, Tasaki M, Uchimura K, Kadomatsu T, Tian Z, Smolka C, Sawa T, Takeya M, Tomizawa K, Ando Y, Araki E, Akaike T, Braun T, Oike Y, Bober E, Yamagata K. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 2014;19:712–21.CrossRefPubMed
18.
go back to reference Kang HS, Okamoto K, Kim Y-S, Takeda Y, Bortner CD, Dang H, Wada T, Xie W, Yang X-P, Liao G, et al. Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes. 2011;60:177–88.PubMedCentralCrossRefPubMed Kang HS, Okamoto K, Kim Y-S, Takeda Y, Bortner CD, Dang H, Wada T, Xie W, Yang X-P, Liao G, et al. Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes. 2011;60:177–88.PubMedCentralCrossRefPubMed
19.
go back to reference Koonen D, Jacobs R, Febbraio M, Young ME, Soltys C-LM, Ong H, Vance DE, Dyck JR. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes. 2007;56:2863–71.CrossRefPubMed Koonen D, Jacobs R, Febbraio M, Young ME, Soltys C-LM, Ong H, Vance DE, Dyck JR. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes. 2007;56:2863–71.CrossRefPubMed
20.
go back to reference Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab. 2008;7:302–11.PubMedCentralCrossRefPubMed Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab. 2008;7:302–11.PubMedCentralCrossRefPubMed
21.
go back to reference Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K, Li P, Cheng HL, Murphy AJ, Valenzuela DM, Luo H, Kapahi P, Krauss R, Mostoslavsky R, Yancopoulos GD, Alt FW, Chua KF, Chen D. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 2013;5:654–65.PubMedCentralCrossRefPubMed Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K, Li P, Cheng HL, Murphy AJ, Valenzuela DM, Luo H, Kapahi P, Krauss R, Mostoslavsky R, Yancopoulos GD, Alt FW, Chua KF, Chen D. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 2013;5:654–65.PubMedCentralCrossRefPubMed
22.
go back to reference Ryu D, Jo YS. Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO, Schoonjans K, Auwerx J. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 2014;20:856–69.CrossRefPubMed Ryu D, Jo YS. Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO, Schoonjans K, Auwerx J. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 2014;20:856–69.CrossRefPubMed
Metadata
Title
Role of SIRT7 in hepatic lipid metabolism
Authors
Kazuya Yamagata
Mohammed Fazlul Karim
Yoshifumi Sato
Tatsuya Yoshizawa
Publication date
01-09-2015
Publisher
Springer Japan
Published in
Diabetology International / Issue 3/2015
Print ISSN: 2190-1678
Electronic ISSN: 2190-1686
DOI
https://doi.org/10.1007/s13340-015-0226-y

Other articles of this Issue 3/2015

Diabetology International 3/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine