Skip to main content
Top
Published in: Cancer Cell International 1/2013

Open Access 01-12-2013 | Primary research

Role of relaxin-2 in human primary osteosarcoma

Authors: Jinfeng Ma, Min Niu, Wenjiu Yang, Lina Zang, Yongming Xi

Published in: Cancer Cell International | Issue 1/2013

Login to get access

Abstract

Background

The aim of this study was to clarify the clinicopathological outcome of serum relaxin-2 and tissues relaxin-2 expression levels in human primary osteosarcoma (OS), and to explore the roles of relaxin-2 inhibition and determine its possibility as a therapeutic target in human osteosarcoma.

Methods

Real-time quantitative RT-PCR assay was performed to detect the expression of relaxin-2 mRNA in 36 cases of human osteosarcoma tissue samples. Serum relaxin-2 levels was measured in ELISA-based method in the 36 cases of osteosarcoma and 50 cases of controls. MTT and TUNEL assay was used to detect cell proliferation and apoptosis after relaxin-2 knockdown with siRNA transfection for 48 hs in vitro. Matrigel invasion and angiogenesis formation assay was used to detect cell metastasis and angiogenesis with HMEC-1 endothelial cells after relaxin-2 knockdown with siRNA transfection for 48 hs in vitro. The effects of relaxin-2 knockdown with anti- relaxin-2 mAb treatment on growth, apoptosis angiogenesis formation and lung metastasis in vivo was analyzed.

Results

The results showed the levels of relaxin-2 mRNA expression in osteosarcoma tissue samples were significantly higher than those in the corresponding non-tumor tissue samples (P < 0.01), and the serum relaxin-2 levels were significantly higher in OS patients than in healthy controls (P < 0.01). The incidence of advanced stage cancer and hematogenous metastasis cancer in the high relaxin-2 mRNA expression group and high serum relaxin-2 levels groups was significantly higher than that in the low relaxin-2 expression group and low serum relaxin-2 levels groups, respectively. Knockdown of relaxin-2 by siRNA transfection in vitro inhibited proliferation, invasion and angiogenesis in vitro in MG-63 OS cells. In vivo, knockdown of relaxin-2 with anti- relaxin-2 mAb treatment inhibited tumor growth by 62% (P < 0.01) and the formation of lung metastases was inhibited by 72.4% (P < 0.01). Microvascular density was reduced more than 60% due to anti- relaxin-2 mAb treatment (P < 0.01).

Conclusions

Our study suggests that overexpression of relaxin-2 is critical for the metastasis of human osteosarcoma. Detection of relaxin-2 mRNA expression or serum relaxin-2 levels may provide the first biological prognostic marker for OS. Furthermore, relaxin-2 is the potential molecular target for osteosarcoma therapy.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Jaffe N: Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res. 2009, 152: 239-262. 10.1007/978-1-4419-0284-9_12.CrossRefPubMed Jaffe N: Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res. 2009, 152: 239-262. 10.1007/978-1-4419-0284-9_12.CrossRefPubMed
3.
go back to reference Chou AJ, Geller DS, Gorlick R: Therapy for osteosarcoma: where do we go from here?. Paediatr Drugs. 2008, 10: 315-327. 10.2165/00148581-200810050-00005.CrossRefPubMed Chou AJ, Geller DS, Gorlick R: Therapy for osteosarcoma: where do we go from here?. Paediatr Drugs. 2008, 10: 315-327. 10.2165/00148581-200810050-00005.CrossRefPubMed
4.
go back to reference Trent JC: Rapid evolution of the biology and treatment of sarcoma. Curr Opin Oncol. 2008, 20: 393-394. 10.1097/CCO.0b013e328303ba31.CrossRefPubMed Trent JC: Rapid evolution of the biology and treatment of sarcoma. Curr Opin Oncol. 2008, 20: 393-394. 10.1097/CCO.0b013e328303ba31.CrossRefPubMed
5.
go back to reference Siegel HJ, Pressey JG: Current concepts on the surgical and medical management of osteosarcoma. Expert Rev Anticancer Ther. 2008, 8: 1257-1269. 10.1586/14737140.8.8.1257.CrossRefPubMed Siegel HJ, Pressey JG: Current concepts on the surgical and medical management of osteosarcoma. Expert Rev Anticancer Ther. 2008, 8: 1257-1269. 10.1586/14737140.8.8.1257.CrossRefPubMed
6.
go back to reference Chou AJ, Gorlick R: Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther. 2006, 6: 1075-1085. 10.1586/14737140.6.7.1075.CrossRefPubMed Chou AJ, Gorlick R: Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther. 2006, 6: 1075-1085. 10.1586/14737140.6.7.1075.CrossRefPubMed
7.
go back to reference Sherwood OD: Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004, 25: 205-234. 10.1210/er.2003-0013.CrossRefPubMed Sherwood OD: Relaxin’s physiological roles and other diverse actions. Endocr Rev. 2004, 25: 205-234. 10.1210/er.2003-0013.CrossRefPubMed
8.
go back to reference Bathgate RA, Ivell R: SanbornBM, et al. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006, 58: 7-31. 10.1124/pr.58.1.9.CrossRefPubMed Bathgate RA, Ivell R: SanbornBM, et al. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006, 58: 7-31. 10.1124/pr.58.1.9.CrossRefPubMed
9.
go back to reference Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM, Agoulnik AI: Relaxin promotes prostate cancer progression. Clinical Cancer Res. 2007, 13: 1695-1702. 10.1158/1078-0432.CCR-06-2492.CrossRef Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM, Agoulnik AI: Relaxin promotes prostate cancer progression. Clinical Cancer Res. 2007, 13: 1695-1702. 10.1158/1078-0432.CCR-06-2492.CrossRef
10.
go back to reference Shabanpoor F, Separovic F, Wade JD: The human insulin superfamily of polypeptide hormones. Vitam Horm. 2009, 80: 1-31.CrossRefPubMed Shabanpoor F, Separovic F, Wade JD: The human insulin superfamily of polypeptide hormones. Vitam Horm. 2009, 80: 1-31.CrossRefPubMed
11.
go back to reference Johnson MR, Abdalla H, Allman AC, Wren ME, Kirkland A, Lighman SL: Relaxin levels in ovum donation pregnancies. Fertil Steril. 1991, 56: 59-61.PubMed Johnson MR, Abdalla H, Allman AC, Wren ME, Kirkland A, Lighman SL: Relaxin levels in ovum donation pregnancies. Fertil Steril. 1991, 56: 59-61.PubMed
12.
go back to reference Brener SHL, Schoenfeld C, Amelar RD, Dubin L, Weiss G: Stimulation of human sperm cervical mucus penetration in vitro by relaxin. Fertil Steril. 1984, 42: 92-96. Brener SHL, Schoenfeld C, Amelar RD, Dubin L, Weiss G: Stimulation of human sperm cervical mucus penetration in vitro by relaxin. Fertil Steril. 1984, 42: 92-96.
13.
go back to reference Conrad KP, Novak J: Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol. 2004, 287: 250-261. 10.1152/ajpregu.00672.2003.CrossRef Conrad KP, Novak J: Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol. 2004, 287: 250-261. 10.1152/ajpregu.00672.2003.CrossRef
14.
go back to reference Silvertown JD, Symes JC, Neschadim A, Nonaka T, Kao JCH, Summerlee AJ, Medin JA: Analog of H2 relaxin exhibits antagonistic properties and impairs prostate tumor growth. FASEB J. 2007, 21: 754-765. 10.1096/fj.06-6847com.CrossRefPubMed Silvertown JD, Symes JC, Neschadim A, Nonaka T, Kao JCH, Summerlee AJ, Medin JA: Analog of H2 relaxin exhibits antagonistic properties and impairs prostate tumor growth. FASEB J. 2007, 21: 754-765. 10.1096/fj.06-6847com.CrossRefPubMed
15.
go back to reference Silvertown JD, Ng J, Sato T, Summerlee AJ, Medin JA: H2 relaxin overexpression increases in vivo prostate xenograft tumor growth and angiogenesis. Int J Cancer. 2006, 118: 62-73. 10.1002/ijc.21288.CrossRefPubMed Silvertown JD, Ng J, Sato T, Summerlee AJ, Medin JA: H2 relaxin overexpression increases in vivo prostate xenograft tumor growth and angiogenesis. Int J Cancer. 2006, 118: 62-73. 10.1002/ijc.21288.CrossRefPubMed
16.
go back to reference Silvertown JD, Geddes BJ, Summerlee AJ: Adenovirusmediated expression of human prorelaxin promotes the invasive potential of canine mammary cancer cells. Endocrinology. 2003, 144: 3683-3691. 10.1210/en.2003-0248.CrossRefPubMed Silvertown JD, Geddes BJ, Summerlee AJ: Adenovirusmediated expression of human prorelaxin promotes the invasive potential of canine mammary cancer cells. Endocrinology. 2003, 144: 3683-3691. 10.1210/en.2003-0248.CrossRefPubMed
17.
go back to reference Binder C, Simon A, Binder L: Elevated concentrations of serum relaxinare associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat. 2004, 87: 157-166. 10.1023/B:BREA.0000041622.30169.16.CrossRefPubMed Binder C, Simon A, Binder L: Elevated concentrations of serum relaxinare associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat. 2004, 87: 157-166. 10.1023/B:BREA.0000041622.30169.16.CrossRefPubMed
18.
go back to reference Einspanier A: Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Mol HumReprod. 2002, 8: 789-796. Einspanier A: Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Mol HumReprod. 2002, 8: 789-796.
19.
go back to reference Kamat AA, Feng S, Agoulnik IU: The role of relaxin in endometrial cancer. Cancer Biol Ther. 2006, 5: 71-77. 10.4161/cbt.5.1.2289.CrossRefPubMed Kamat AA, Feng S, Agoulnik IU: The role of relaxin in endometrial cancer. Cancer Biol Ther. 2006, 5: 71-77. 10.4161/cbt.5.1.2289.CrossRefPubMed
20.
go back to reference Hombach-Klonisch S, Bialek J, Trojanowicz B: Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol. 2006, 169: 617-632. 10.2353/ajpath.2006.050876.PubMedCentralCrossRefPubMed Hombach-Klonisch S, Bialek J, Trojanowicz B: Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol. 2006, 169: 617-632. 10.2353/ajpath.2006.050876.PubMedCentralCrossRefPubMed
21.
go back to reference Facciolli A, Ferlin A, Gianesello L, Pepe A, Foresta C: Role of relaxin in human osteoclastogenesis. Ann N Y Acad Sci. 2009, 1160: 221-225. 10.1111/j.1749-6632.2008.03788.x.CrossRefPubMed Facciolli A, Ferlin A, Gianesello L, Pepe A, Foresta C: Role of relaxin in human osteoclastogenesis. Ann N Y Acad Sci. 2009, 1160: 221-225. 10.1111/j.1749-6632.2008.03788.x.CrossRefPubMed
22.
go back to reference Ferlin A, Pepe A, Facciolli A, Gianesello L, Foresta C: Relaxin stimulates osteoclast differentiation and activation. Bone. 2010, 46: 504-513. 10.1016/j.bone.2009.10.007.CrossRefPubMed Ferlin A, Pepe A, Facciolli A, Gianesello L, Foresta C: Relaxin stimulates osteoclast differentiation and activation. Bone. 2010, 46: 504-513. 10.1016/j.bone.2009.10.007.CrossRefPubMed
23.
go back to reference Vinall RL, Tepper CG, Shi XB: The R273H p53 mutation can facilitate the androgen-independent growth of LNCaP by a mechanism that involves H2 relaxin and its cognate receptor LGR7. Oncogene. 2006, 25: 2082-2093. 10.1038/sj.onc.1209246.CrossRefPubMed Vinall RL, Tepper CG, Shi XB: The R273H p53 mutation can facilitate the androgen-independent growth of LNCaP by a mechanism that involves H2 relaxin and its cognate receptor LGR7. Oncogene. 2006, 25: 2082-2093. 10.1038/sj.onc.1209246.CrossRefPubMed
24.
go back to reference Thompson VC, Morris TG, Cochrane DR: Relaxin becomes upregulated during prostate cancer progression to androgen independence and is negatively regulated by androgens. Prostate. 2006, 66: 1698-1709. 10.1002/pros.20423.CrossRefPubMed Thompson VC, Morris TG, Cochrane DR: Relaxin becomes upregulated during prostate cancer progression to androgen independence and is negatively regulated by androgens. Prostate. 2006, 66: 1698-1709. 10.1002/pros.20423.CrossRefPubMed
25.
go back to reference Goldsmith LT, Weiss G, Palejwala S: Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci USA. 2004, 101: 4685-4689. 10.1073/pnas.0400776101.PubMedCentralCrossRefPubMed Goldsmith LT, Weiss G, Palejwala S: Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci USA. 2004, 101: 4685-4689. 10.1073/pnas.0400776101.PubMedCentralCrossRefPubMed
26.
go back to reference Palejwala S, Tseng L, Wojtczuk A, Weiss G, Goldsmith LT: Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod. 2002, 66: 1743-1748. 10.1095/biolreprod66.6.1743.CrossRefPubMed Palejwala S, Tseng L, Wojtczuk A, Weiss G, Goldsmith LT: Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod. 2002, 66: 1743-1748. 10.1095/biolreprod66.6.1743.CrossRefPubMed
Metadata
Title
Role of relaxin-2 in human primary osteosarcoma
Authors
Jinfeng Ma
Min Niu
Wenjiu Yang
Lina Zang
Yongming Xi
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2013
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-13-59

Other articles of this Issue 1/2013

Cancer Cell International 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine