Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 1/2008

01-03-2008

Role of Prolactin and Vasoinhibins in the Regulation of Vascular Function in Mammary Gland

Authors: Carmen Clapp, Stéphanie Thebault, Gonzalo Martínez de la Escalera

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 1/2008

Login to get access

Abstract

The formation of new blood vessels has become a major focus of mammary gland research stimulated by the therapeutic opportunities of controlling angiogenesis in breast cancer. Normal growth and involution of the mammary gland are profoundly affected by the expansion and regression of blood vessels, whereas dysregulation of angiogenesis is characteristic of breast cancer growth and metastasis. Prolactin stimulates the growth and differentiation of the mammary gland under normal conditions, but its role in breast cancer is controversial. Its action is complicated by the fact that prolactin itself is angiogenic, but proteases cleave prolactin to generate vasoinhibins, a family of peptides that act on endothelial cells to suppress angiogenesis and vasodilation and to promote apoptosis-mediated vascular regression. This review summarizes our current knowledge about the vascular effects of prolactin and the generation and action of vasoinhibins, and discusses their possible contribution to the regulation of blood vessels in the normal and malignant mammary gland.
Literature
1.
go back to reference Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 2002;7(1):17–38.PubMed Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 2002;7(1):17–38.PubMed
2.
go back to reference Silberstein GB. Postnatal mammary gland morphogenesis. Microsc Res Tech 2001;52(2):155–62.PubMed Silberstein GB. Postnatal mammary gland morphogenesis. Microsc Res Tech 2001;52(2):155–62.PubMed
3.
go back to reference Stein T, Salomonis N, Gusterson BA. Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia 2007;12(1):25–35.PubMed Stein T, Salomonis N, Gusterson BA. Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia 2007;12(1):25–35.PubMed
5.
go back to reference Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001;61(3):253–70.PubMed Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001;61(3):253–70.PubMed
6.
go back to reference Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. Embo J 1997;16(23):6926–35.PubMed Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. Embo J 1997;16(23):6926–35.PubMed
7.
go back to reference Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7(1):49–66.PubMed Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7(1):49–66.PubMed
8.
go back to reference Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997;11(2):167–78.PubMed Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997;11(2):167–78.PubMed
9.
go back to reference Vonderhaar BK. Prolactin involvement in breast cancer. Endocr Relat Cancer 1999;6(3):389–404.PubMed Vonderhaar BK. Prolactin involvement in breast cancer. Endocr Relat Cancer 1999;6(3):389–404.PubMed
10.
go back to reference Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev 2003;24(1):1–27.PubMed Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev 2003;24(1):1–27.PubMed
11.
go back to reference Clapp C, Aranda J, Gonzalez C, Jeziorski MC, Martinez de la Escalera G. Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol Metab 2006;17(8):301–7.PubMed Clapp C, Aranda J, Gonzalez C, Jeziorski MC, Martinez de la Escalera G. Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol Metab 2006;17(8):301–7.PubMed
12.
go back to reference Corbacho AM, Martinez De La Escalera G, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 2002;173(2):219–38.PubMed Corbacho AM, Martinez De La Escalera G, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 2002;173(2):219–38.PubMed
13.
go back to reference Hadsell DL. The insulin-like growth factor system in normal mammary gland function. Breast Dis 2003;17:3–14.PubMed Hadsell DL. The insulin-like growth factor system in normal mammary gland function. Breast Dis 2003;17:3–14.PubMed
14.
go back to reference Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J. Pregnancy and lactation affect the microvasculature of the mammary gland in mice. J Vet Med Sci 1992;54(5):937–43.PubMed Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J. Pregnancy and lactation affect the microvasculature of the mammary gland in mice. J Vet Med Sci 1992;54(5):937–43.PubMed
15.
go back to reference Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001;52(2):182–9.PubMed Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001;52(2):182–9.PubMed
16.
go back to reference Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 2000;5(2):227–41.PubMed Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 2000;5(2):227–41.PubMed
17.
go back to reference Yasugi T, Kaido T, Uehara Y. Changes in density and architecture of microvessels of the rat mammary gland during pregnancy and lactation. Arch Histol Cytol 1989;52(2):115–22.PubMed Yasugi T, Kaido T, Uehara Y. Changes in density and architecture of microvessels of the rat mammary gland during pregnancy and lactation. Arch Histol Cytol 1989;52(2):115–22.PubMed
18.
go back to reference Abdul Awal M, Matsumoto M, Toyoshima Y, Nishinakagawa H. Ultrastructural and morphometrical studies on the endothelial cells of arteries supplying the abdomino-inguinal mammary gland of rats during the reproductive cycle. J Vet Med Sci 1996;58(1):29–34.PubMed Abdul Awal M, Matsumoto M, Toyoshima Y, Nishinakagawa H. Ultrastructural and morphometrical studies on the endothelial cells of arteries supplying the abdomino-inguinal mammary gland of rats during the reproductive cycle. J Vet Med Sci 1996;58(1):29–34.PubMed
19.
go back to reference Baxter FO, Neoh K, Tevendale MC. The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia 2007;12(1):3–13.PubMed Baxter FO, Neoh K, Tevendale MC. The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia 2007;12(1):3–13.PubMed
20.
go back to reference Walker NI, Bennett RE, Kerr JF. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat 1989;185(1):19–32.PubMed Walker NI, Bennett RE, Kerr JF. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat 1989;185(1):19–32.PubMed
21.
go back to reference Benaud C, Dickson RB, Thompson EW. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res Treat 1998;50(2):97–116.PubMed Benaud C, Dickson RB, Thompson EW. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res Treat 1998;50(2):97–116.PubMed
22.
go back to reference Medh RD, Thompson EB. Hormonal regulation of physiological cell turnover and apoptosis. Cell Tissue Res 2000;301(1):101–24.PubMed Medh RD, Thompson EB. Hormonal regulation of physiological cell turnover and apoptosis. Cell Tissue Res 2000;301(1):101–24.PubMed
23.
go back to reference Busso N, Huarte J, Vassalli JD, Sappino AP, Belin D. Plasminogen activators in the mouse mammary gland. Decreased expression during lactation. J Biol Chem 1989;264(13):7455–7.PubMed Busso N, Huarte J, Vassalli JD, Sappino AP, Belin D. Plasminogen activators in the mouse mammary gland. Decreased expression during lactation. J Biol Chem 1989;264(13):7455–7.PubMed
24.
go back to reference Miller KD, Dul CL. Breast cancer: the role of angiogenesis and antiangiogenic therapy. Hematol Oncol Clin North Am 2004;18(5):1071–86. ix.PubMed Miller KD, Dul CL. Breast cancer: the role of angiogenesis and antiangiogenic therapy. Hematol Oncol Clin North Am 2004;18(5):1071–86. ix.PubMed
25.
go back to reference Schneider BP, Miller KD. Angiogenesis of breast cancer. J Clin Oncol 2005;23(8):1782–90.PubMed Schneider BP, Miller KD. Angiogenesis of breast cancer. J Clin Oncol 2005;23(8):1782–90.PubMed
26.
go back to reference Brem SS, Gullino PM, Medina D. Angiogenesis: a marker for neoplastic transformation of mammary papillary hyperplasia. Science 1977;195(4281):880–2.PubMed Brem SS, Gullino PM, Medina D. Angiogenesis: a marker for neoplastic transformation of mammary papillary hyperplasia. Science 1977;195(4281):880–2.PubMed
27.
go back to reference Jensen HM, Chen I, DeVault MR, Lewis AE. Angiogenesis induced by “normal” human breast tissue: a probable marker for precancer. Science 1982;218(4569):293–5.PubMed Jensen HM, Chen I, DeVault MR, Lewis AE. Angiogenesis induced by “normal” human breast tissue: a probable marker for precancer. Science 1982;218(4569):293–5.PubMed
28.
go back to reference Strum JM. Angiogenic responses elicited from chorioallantoic membrane vessels by neoplastic, preneoplastic, and normal mammary tissues from GR mice. Am J Pathol 1983;111(3):282–7.PubMed Strum JM. Angiogenic responses elicited from chorioallantoic membrane vessels by neoplastic, preneoplastic, and normal mammary tissues from GR mice. Am J Pathol 1983;111(3):282–7.PubMed
29.
go back to reference Lichtenbeld HC, Barendsz-Janson AF, van Essen H, Struijker Boudier H, Griffioen AW, Hillen HF. Angiogenic potential of malignant and non-malignant human breast tissues in an in vivo angiogenesis model. Int J Cancer 1998;77(3):455–9.PubMed Lichtenbeld HC, Barendsz-Janson AF, van Essen H, Struijker Boudier H, Griffioen AW, Hillen HF. Angiogenic potential of malignant and non-malignant human breast tissues in an in vivo angiogenesis model. Int J Cancer 1998;77(3):455–9.PubMed
30.
go back to reference Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93(4):266–76.PubMed Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93(4):266–76.PubMed
31.
go back to reference Richard DE, Berra E, Pouyssegur J. Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun 1999;266(3):718–22.PubMed Richard DE, Berra E, Pouyssegur J. Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun 1999;266(3):718–22.PubMed
32.
go back to reference Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, El Atifi-Borel M, et al. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 2000;191(10):1789–98.PubMed Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, El Atifi-Borel M, et al. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 2000;191(10):1789–98.PubMed
33.
go back to reference Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001;93(4):309–14.PubMed Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001;93(4):309–14.PubMed
34.
go back to reference Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, et al. The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 2000;83(1):63–8.PubMed Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, et al. The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 2000;83(1):63–8.PubMed
35.
go back to reference McLeskey SW, Zhang L, Kharbanda S, Kurebayashi J, Lippman ME, Dickson RB, et al. Fibroblast growth factor overexpressing breast carcinoma cells as models of angiogenesis and metastasis. Breast Cancer Res Treat 1996;39(1):103–17.PubMed McLeskey SW, Zhang L, Kharbanda S, Kurebayashi J, Lippman ME, Dickson RB, et al. Fibroblast growth factor overexpressing breast carcinoma cells as models of angiogenesis and metastasis. Breast Cancer Res Treat 1996;39(1):103–17.PubMed
36.
go back to reference Kim KS, Park YS. Antitumor effects of angiostatin K1–3 and endostatin genes coadministered by the hydrodynamics-based transfection method. Oncol Res 2005;15(7–8):343–50.PubMed Kim KS, Park YS. Antitumor effects of angiostatin K1–3 and endostatin genes coadministered by the hydrodynamics-based transfection method. Oncol Res 2005;15(7–8):343–50.PubMed
37.
go back to reference Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994;263(5146):526–9.PubMed Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994;263(5146):526–9.PubMed
38.
go back to reference Ek ET, Dass CR, Contreras KG, Choong PF. Pigment epithelium-derived factor overexpression inhibits orthotopic osteosarcoma growth, angiogenesis and metastasis. Cancer Gene Ther 2007;14(7):616–26.PubMed Ek ET, Dass CR, Contreras KG, Choong PF. Pigment epithelium-derived factor overexpression inhibits orthotopic osteosarcoma growth, angiogenesis and metastasis. Cancer Gene Ther 2007;14(7):616–26.PubMed
39.
go back to reference Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 2004;64(9):2941–55.PubMed Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 2004;64(9):2941–55.PubMed
40.
go back to reference Guinebretiere JM, Le Monique G, Gavoille A, Bahi J, Contesso G. Angiogenesis and risk of breast cancer in women with fibrocystic disease. J Natl Cancer Inst 1994;86(8):635–6.PubMed Guinebretiere JM, Le Monique G, Gavoille A, Bahi J, Contesso G. Angiogenesis and risk of breast cancer in women with fibrocystic disease. J Natl Cancer Inst 1994;86(8):635–6.PubMed
41.
go back to reference Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 1991;324(1):1–8.PubMedCrossRef Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 1991;324(1):1–8.PubMedCrossRef
42.
go back to reference Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992;84(24):1875–87.PubMed Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992;84(24):1875–87.PubMed
43.
go back to reference Dabrosin C. Sex steroid regulation of angiogenesis in breast tissue. Angiogenesis 2005;8(2):127–36.PubMed Dabrosin C. Sex steroid regulation of angiogenesis in breast tissue. Angiogenesis 2005;8(2):127–36.PubMed
44.
go back to reference Rossiter H, Barresi C, Ghannadan M, Gruber F, Mildner M, Fodinger D, et al. Inactivation of VEGF in mammary gland epithelium severely compromises mammary gland development and function. Faseb J 2007;21(14):3994–4004.PubMed Rossiter H, Barresi C, Ghannadan M, Gruber F, Mildner M, Fodinger D, et al. Inactivation of VEGF in mammary gland epithelium severely compromises mammary gland development and function. Faseb J 2007;21(14):3994–4004.PubMed
45.
go back to reference Bando H. Vascular endothelial growth factor and bevacitumab in breast cancer. Breast Cancer 2007;14(2):163–73.PubMed Bando H. Vascular endothelial growth factor and bevacitumab in breast cancer. Breast Cancer 2007;14(2):163–73.PubMed
46.
go back to reference Hyder SM, Nawaz Z, Chiappetta C, Stancel GM. Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res 2000;60(12):3183–90.PubMed Hyder SM, Nawaz Z, Chiappetta C, Stancel GM. Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res 2000;60(12):3183–90.PubMed
47.
go back to reference Wu J, Richer J, Horwitz KB, Hyder SM. Progestin-dependent induction of vascular endothelial growth factor in human breast cancer cells: preferential regulation by progesterone receptor B. Cancer Res 2004;64(6):2238–44.PubMed Wu J, Richer J, Horwitz KB, Hyder SM. Progestin-dependent induction of vascular endothelial growth factor in human breast cancer cells: preferential regulation by progesterone receptor B. Cancer Res 2004;64(6):2238–44.PubMed
48.
go back to reference Miele C, Rochford JJ, Filippa N, Giorgetti-Peraldi S, Van Obberghen E. Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways. J Biol Chem 2000;275(28):21695–702.PubMed Miele C, Rochford JJ, Filippa N, Giorgetti-Peraldi S, Van Obberghen E. Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways. J Biol Chem 2000;275(28):21695–702.PubMed
49.
go back to reference Goldhar AS, Vonderhaar BK, Trott JF, Hovey RC. Prolactin-induced expression of vascular endothelial growth factor via Egr-1. Mol Cell Endocrinol 2005;232(1–2):9–19.PubMed Goldhar AS, Vonderhaar BK, Trott JF, Hovey RC. Prolactin-induced expression of vascular endothelial growth factor via Egr-1. Mol Cell Endocrinol 2005;232(1–2):9–19.PubMed
50.
go back to reference Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997;138(3):707–17.PubMed Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997;138(3):707–17.PubMed
51.
go back to reference Yamauchi M, Imajoh-Ohmi S, Shibuya M. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci 2007;98(9):1491–7.PubMed Yamauchi M, Imajoh-Ohmi S, Shibuya M. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci 2007;98(9):1491–7.PubMed
52.
go back to reference Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 2000;37(3):209–18.PubMed Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 2000;37(3):209–18.PubMed
53.
go back to reference Zhang M, Volpert O, Shi YH, Bouck N. Maspin is an angiogenesis inhibitor. Nat Med 2000;6(2):196–9.PubMed Zhang M, Volpert O, Shi YH, Bouck N. Maspin is an angiogenesis inhibitor. Nat Med 2000;6(2):196–9.PubMed
54.
go back to reference Shao ZM, Radziszewski WJ, Barsky SH. Tamoxifen enhances myoepithelial cell suppression of human breast carcinoma progression in vitro by two different effector mechanisms. Cancer Lett 2000;157(2):133–44.PubMed Shao ZM, Radziszewski WJ, Barsky SH. Tamoxifen enhances myoepithelial cell suppression of human breast carcinoma progression in vitro by two different effector mechanisms. Cancer Lett 2000;157(2):133–44.PubMed
55.
go back to reference Mirkin S, Wong BC, Archer DF. Effects of 17beta-estradiol, progesterone, synthetic progestins, tibolone, and raloxifene on vascular endothelial growth factor and Thrombospondin-1 messenger RNA in breast cancer cells. Int J Gynecol Cancer 2006;16(2):560–3.PubMed Mirkin S, Wong BC, Archer DF. Effects of 17beta-estradiol, progesterone, synthetic progestins, tibolone, and raloxifene on vascular endothelial growth factor and Thrombospondin-1 messenger RNA in breast cancer cells. Int J Gynecol Cancer 2006;16(2):560–3.PubMed
56.
go back to reference Uray IP, Liang Y, Hyder SM. Estradiol down-regulates CD36 expression in human breast cancer cells. Cancer Lett 2004;207(1):101–7.PubMed Uray IP, Liang Y, Hyder SM. Estradiol down-regulates CD36 expression in human breast cancer cells. Cancer Lett 2004;207(1):101–7.PubMed
57.
go back to reference Li Z, Shi HY, Zhang M. Targeted expression of maspin in tumor vasculatures induces endothelial cell apoptosis. Oncogene 2005;24(12):2008–19.PubMed Li Z, Shi HY, Zhang M. Targeted expression of maspin in tumor vasculatures induces endothelial cell apoptosis. Oncogene 2005;24(12):2008–19.PubMed
58.
go back to reference Volpert OV, Stellmach V, Bouck N. The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat 1995;36(2):119–26.PubMed Volpert OV, Stellmach V, Bouck N. The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat 1995;36(2):119–26.PubMed
59.
go back to reference Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 2001;98(22):12485–90.PubMed Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 2001;98(22):12485–90.PubMed
60.
go back to reference van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 2006;26(4):716–28.PubMed van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 2006;26(4):716–28.PubMed
61.
go back to reference Yoon SO, Park SJ, Yun CH, Chung AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 2003;36(1):128–37.PubMed Yoon SO, Park SJ, Yun CH, Chung AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 2003;36(1):128–37.PubMed
62.
go back to reference Briozzo P, Badet J, Capony F, Pieri I, Montcourrier P, Barritault D, et al. MCF7 mammary cancer cells respond to bFGF and internalize it following its release from extracellular matrix: a permissive role of cathepsin D. Exp Cell Res 1991;194(2):252–9.PubMed Briozzo P, Badet J, Capony F, Pieri I, Montcourrier P, Barritault D, et al. MCF7 mammary cancer cells respond to bFGF and internalize it following its release from extracellular matrix: a permissive role of cathepsin D. Exp Cell Res 1991;194(2):252–9.PubMed
63.
go back to reference Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett 2006;237(2):167–79.PubMed Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett 2006;237(2):167–79.PubMed
64.
go back to reference Macotela Y, Aguilar MB, Guzman-Morales J, Rivera JC, Zermeno C, Lopez-Barrera F, et al. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci 2006;119(Pt 9):1790–800.PubMed Macotela Y, Aguilar MB, Guzman-Morales J, Rivera JC, Zermeno C, Lopez-Barrera F, et al. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci 2006;119(Pt 9):1790–800.PubMed
65.
go back to reference Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost 2001;86(1):346–55.PubMed Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost 2001;86(1):346–55.PubMed
66.
go back to reference Gaytan F, Morales C, Bellido C, Aguilar E, Sanchez-Criado JE. Role of prolactin in the regulation of macrophages and in the proliferative activity of vascular cells in newly formed and regressing rat corpora lutea. Biol Reprod 1997;57(2):478–86.PubMed Gaytan F, Morales C, Bellido C, Aguilar E, Sanchez-Criado JE. Role of prolactin in the regulation of macrophages and in the proliferative activity of vascular cells in newly formed and regressing rat corpora lutea. Biol Reprod 1997;57(2):478–86.PubMed
67.
go back to reference Struman I, Bentzien F, Lee H, Mainfroid V, D’Angelo G, Goffin V, et al. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci U S A 1999;96(4):1246–51.PubMed Struman I, Bentzien F, Lee H, Mainfroid V, D’Angelo G, Goffin V, et al. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci U S A 1999;96(4):1246–51.PubMed
68.
go back to reference Clapp C, Martial JA, Guzman RC, Rentier-Delure F, Weiner RI. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993;133(3):1292–9.PubMed Clapp C, Martial JA, Guzman RC, Rentier-Delure F, Weiner RI. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993;133(3):1292–9.PubMed
69.
go back to reference Ge G, Fernandez CA, Moses MA, Greenspan DS. Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Natl Acad Sci U S A 2007;104(24):10010–5.PubMed Ge G, Fernandez CA, Moses MA, Greenspan DS. Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Natl Acad Sci U S A 2007;104(24):10010–5.PubMed
70.
go back to reference Ueda E, Ozerdem U, Chen YH, Yao M, Huang KT, Sun H, et al. A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr Relat Cancer 2006;13(1):95–111.PubMed Ueda E, Ozerdem U, Chen YH, Yao M, Huang KT, Sun H, et al. A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr Relat Cancer 2006;13(1):95–111.PubMed
71.
go back to reference Ko JY, Ahn YL, Cho BN. Angiogenesis and white blood cell proliferation induced in mice by injection of a prolactin-expressing plasmid into muscle. Mol Cells 2003;15(2):262–70.PubMed Ko JY, Ahn YL, Cho BN. Angiogenesis and white blood cell proliferation induced in mice by injection of a prolactin-expressing plasmid into muscle. Mol Cells 2003;15(2):262–70.PubMed
72.
go back to reference Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 2007;128(3):589–600.PubMed Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 2007;128(3):589–600.PubMed
73.
go back to reference Clapp C, Lopez-Gomez FJ, Nava G, Corbacho A, Torner L, Macotela Y, et al. Expression of prolactin mRNA and of prolactin-like proteins in endothelial cells: evidence for autocrine effects. J Endocrinol 1998;158(1):137–44.PubMed Clapp C, Lopez-Gomez FJ, Nava G, Corbacho A, Torner L, Macotela Y, et al. Expression of prolactin mRNA and of prolactin-like proteins in endothelial cells: evidence for autocrine effects. J Endocrinol 1998;158(1):137–44.PubMed
74.
go back to reference Grosdemouge I, Bachelot A, Lucas A, Baran N, Kelly PA, Binart N. Effects of deletion of the prolactin receptor on ovarian gene expression. Reprod Biol Endocrinol 2003;1:12.PubMed Grosdemouge I, Bachelot A, Lucas A, Baran N, Kelly PA, Binart N. Effects of deletion of the prolactin receptor on ovarian gene expression. Reprod Biol Endocrinol 2003;1:12.PubMed
75.
go back to reference Duenas Z, Torner L, Corbacho AM, Ochoa A, Gutierrez-Ospina G, Lopez-Barrera F, et al. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest Ophthalmol Vis Sci 1999;40(11):2498–505.PubMed Duenas Z, Torner L, Corbacho AM, Ochoa A, Gutierrez-Ospina G, Lopez-Barrera F, et al. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest Ophthalmol Vis Sci 1999;40(11):2498–505.PubMed
76.
go back to reference Ochoa A, Montes de Oca P, Rivera JC, Duenas Z, Nava G, de La Escalera GM, et al. Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 2001;42(7):1639–45.PubMed Ochoa A, Montes de Oca P, Rivera JC, Duenas Z, Nava G, de La Escalera GM, et al. Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 2001;42(7):1639–45.PubMed
77.
go back to reference Clapp C, Weiner RI. A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 1992;130(3):1380–6.PubMed Clapp C, Weiner RI. A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 1992;130(3):1380–6.PubMed
78.
go back to reference Merkle CJ, Schuler LA, Schaeffer RC Jr., Gribbon JM, Montgomery DW. Structural and functional effects of high prolactin levels on injured endothelial cells: evidence for an endothelial prolactin receptor. Endocrine 2000;13(1):37–46.PubMed Merkle CJ, Schuler LA, Schaeffer RC Jr., Gribbon JM, Montgomery DW. Structural and functional effects of high prolactin levels on injured endothelial cells: evidence for an endothelial prolactin receptor. Endocrine 2000;13(1):37–46.PubMed
79.
go back to reference Ricken AM, Traenkner A, Merkwitz C, Hummitzsch K, Grosche J, Spanel-Borowski K. The short prolactin receptor predominates in endothelial cells of micro- and macrovascular origin. J Vasc Res 2007;44(1):19–30.PubMed Ricken AM, Traenkner A, Merkwitz C, Hummitzsch K, Grosche J, Spanel-Borowski K. The short prolactin receptor predominates in endothelial cells of micro- and macrovascular origin. J Vasc Res 2007;44(1):19–30.PubMed
80.
go back to reference Ferrara N, Clapp C, Weiner R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 1991;129(2):896–900.PubMed Ferrara N, Clapp C, Weiner R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 1991;129(2):896–900.PubMed
81.
go back to reference Malaguarnera L, Pilastro MR, Quan S, Ghattas MH, Yang L, Mezentsev AV, et al. Significance of heme oxygenase in prolactin-mediated cell proliferation and angiogenesis in human endothelial cells. Int J Mol Med 2002;10(4):433–40.PubMed Malaguarnera L, Pilastro MR, Quan S, Ghattas MH, Yang L, Mezentsev AV, et al. Significance of heme oxygenase in prolactin-mediated cell proliferation and angiogenesis in human endothelial cells. Int J Mol Med 2002;10(4):433–40.PubMed
82.
go back to reference Duenas Z, Rivera JC, Quiroz-Mercado H, Aranda J, Macotela Y, Montes de Oca P, et al. Prolactin in eyes of patients with retinopathy of prematurity: implications for vascular regression. Invest Ophthalmol Vis Sci 2004;45(7):2049–55.PubMed Duenas Z, Rivera JC, Quiroz-Mercado H, Aranda J, Macotela Y, Montes de Oca P, et al. Prolactin in eyes of patients with retinopathy of prematurity: implications for vascular regression. Invest Ophthalmol Vis Sci 2004;45(7):2049–55.PubMed
83.
go back to reference Corbacho AM, Macotela Y, Nava G, Torner L, Duenas Z, Noris G, et al. Human umbilical vein endothelial cells express multiple prolactin isoforms. J Endocrinol 2000;166(1):53–62.PubMed Corbacho AM, Macotela Y, Nava G, Torner L, Duenas Z, Noris G, et al. Human umbilical vein endothelial cells express multiple prolactin isoforms. J Endocrinol 2000;166(1):53–62.PubMed
84.
go back to reference Malaguarnera L, Imbesi RM, Scuto A, D’Amico F, Licata F, Messina A, et al. Prolactin increases HO-1 expression and induces VEGF production in human macrophages. J Cell Biochem 2004;93(1):197–206.PubMed Malaguarnera L, Imbesi RM, Scuto A, D’Amico F, Licata F, Messina A, et al. Prolactin increases HO-1 expression and induces VEGF production in human macrophages. J Cell Biochem 2004;93(1):197–206.PubMed
85.
go back to reference Deramaudt BM, Braunstein S, Remy P, Abraham NG. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J Cell Biochem 1998;68(1):121–7.PubMed Deramaudt BM, Braunstein S, Remy P, Abraham NG. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J Cell Biochem 1998;68(1):121–7.PubMed
86.
go back to reference Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2000;192(7):1015–26.PubMed Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2000;192(7):1015–26.PubMed
87.
go back to reference Srivastava RK, Gu Y, Ayloo S, Zilberstein M, Gibori G. Developmental expression and regulation of basic fibroblast growth factor and vascular endothelial growth factor in rat decidua and in a decidual cell line. J Mol Endocrinol 1998;21(3):355–62.PubMed Srivastava RK, Gu Y, Ayloo S, Zilberstein M, Gibori G. Developmental expression and regulation of basic fibroblast growth factor and vascular endothelial growth factor in rat decidua and in a decidual cell line. J Mol Endocrinol 1998;21(3):355–62.PubMed
88.
go back to reference Too CK, Knee R, Pinette AL, Li AW, Murphy PR. Prolactin induces expression of FGF-2 and a novel FGF-responsive NonO/p54nrb-related mRNA in rat lymphoma cells. Mol Cell Endocrinol 1998;137(2):187–95.PubMed Too CK, Knee R, Pinette AL, Li AW, Murphy PR. Prolactin induces expression of FGF-2 and a novel FGF-responsive NonO/p54nrb-related mRNA in rat lymphoma cells. Mol Cell Endocrinol 1998;137(2):187–95.PubMed
89.
go back to reference Malaguarnera L, Imbesi R, Di Rosa M, Scuto A, Castrogiovanni P, Messina A, et al. Action of prolactin, IFN-gamma, TNF-alpha and LPS on heme oxygenase-1 expression and VEGF release in human monocytes/macrophages. Int Immunopharmacol 2005;5(9):1458–69.PubMed Malaguarnera L, Imbesi R, Di Rosa M, Scuto A, Castrogiovanni P, Messina A, et al. Action of prolactin, IFN-gamma, TNF-alpha and LPS on heme oxygenase-1 expression and VEGF release in human monocytes/macrophages. Int Immunopharmacol 2005;5(9):1458–69.PubMed
90.
go back to reference Yu JL, Rak JW. Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 2003;5(2):83–8.PubMed Yu JL, Rak JW. Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 2003;5(2):83–8.PubMed
91.
go back to reference Dogusan Z, Hooghe R, Verdood P, Hooghe-Peters EL. Cytokine-like effects of prolactin in human mononuclear and polymorphonuclear leukocytes. J Neuroimmunol 2001;120(1–2):58–66.PubMed Dogusan Z, Hooghe R, Verdood P, Hooghe-Peters EL. Cytokine-like effects of prolactin in human mononuclear and polymorphonuclear leukocytes. J Neuroimmunol 2001;120(1–2):58–66.PubMed
92.
go back to reference Yu-Lee LY. Prolactin modulation of immune and inflammatory responses. Recent Prog Horm Res 2002;57:435–55.PubMed Yu-Lee LY. Prolactin modulation of immune and inflammatory responses. Recent Prog Horm Res 2002;57:435–55.PubMed
93.
go back to reference Montes de Oca P, Macotela Y, Nava G, Lopez-Barrera F, de la Escalera GM, Clapp C. Prolactin stimulates integrin-mediated adhesion of circulating mononuclear cells to endothelial cells. Lab Invest 2005;85(5):633–42.PubMed Montes de Oca P, Macotela Y, Nava G, Lopez-Barrera F, de la Escalera GM, Clapp C. Prolactin stimulates integrin-mediated adhesion of circulating mononuclear cells to endothelial cells. Lab Invest 2005;85(5):633–42.PubMed
94.
go back to reference Mills DE, Ward RP. Effect of prolactin on blood pressure and cardiovascular responsiveness in the rat. Proc Soc Exp Biol Med 1986;181(1):3–8.PubMed Mills DE, Ward RP. Effect of prolactin on blood pressure and cardiovascular responsiveness in the rat. Proc Soc Exp Biol Med 1986;181(1):3–8.PubMed
95.
go back to reference Bryant EE, Douglas BH, Ashburn AD. The effect of prolactin on blood pressure, blood volume, and angiotensin response. J Lab Clin Med 1971;78(5):795–6.PubMed Bryant EE, Douglas BH, Ashburn AD. The effect of prolactin on blood pressure, blood volume, and angiotensin response. J Lab Clin Med 1971;78(5):795–6.PubMed
96.
go back to reference Mati JK, Mugambi M, Odipo WS, Nguli K. Prolactin and hypertension. Am J Obstet Gynecol 1977;127(6):616–9.PubMed Mati JK, Mugambi M, Odipo WS, Nguli K. Prolactin and hypertension. Am J Obstet Gynecol 1977;127(6):616–9.PubMed
97.
go back to reference Horrobin DF, Manku MS, Burstyn PG. Effect of intravenous prolactin infusion on arterial blood pressure in rabbits. Cardiovasc Res 1973;7(5):585–7.PubMedCrossRef Horrobin DF, Manku MS, Burstyn PG. Effect of intravenous prolactin infusion on arterial blood pressure in rabbits. Cardiovasc Res 1973;7(5):585–7.PubMedCrossRef
98.
go back to reference Manku MS, Nassar BA, Horrobin DF. Effects of prolactin on the responses of rat aortic and arteriolar smooth-muscle preparations to noradrenaline and angiotensin. Lancet 1973;2(7836):991–4.PubMed Manku MS, Nassar BA, Horrobin DF. Effects of prolactin on the responses of rat aortic and arteriolar smooth-muscle preparations to noradrenaline and angiotensin. Lancet 1973;2(7836):991–4.PubMed
99.
go back to reference Gonzalez C, Corbacho AM, Eiserich JP, Garcia C, Lopez-Barrera F, Morales-Tlalpan V, et al. 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology 2004;145(12):5714–22.PubMed Gonzalez C, Corbacho AM, Eiserich JP, Garcia C, Lopez-Barrera F, Morales-Tlalpan V, et al. 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology 2004;145(12):5714–22.PubMed
100.
go back to reference Molinari C, Grossini E, Mary DA, Uberti F, Ghigo E, Ribichini F, et al. Prolactin induces regional vasoconstriction through the beta2-adrenergic and nitric oxide mechanisms. Endocrinology 2007;148(8):4080–90.PubMed Molinari C, Grossini E, Mary DA, Uberti F, Ghigo E, Ribichini F, et al. Prolactin induces regional vasoconstriction through the beta2-adrenergic and nitric oxide mechanisms. Endocrinology 2007;148(8):4080–90.PubMed
101.
go back to reference Grossini E, Molinari C, Battaglia A, Mary DA, Ribichini F, Surico N, et al. Human placental lactogen decreases regional blood flow in anesthetized pigs. J Vasc Res 2006;43(2):205–13.PubMed Grossini E, Molinari C, Battaglia A, Mary DA, Ribichini F, Surico N, et al. Human placental lactogen decreases regional blood flow in anesthetized pigs. J Vasc Res 2006;43(2):205–13.PubMed
102.
go back to reference Vacca G, Battaglia A, Chiorboli E, Grossini E, Mary DA, Molinari C, et al. Haemodynamic effects of the intravenous administration of growth hormone in anaesthetized pigs. Pflugers Arch 1998;436(2):159–67.PubMed Vacca G, Battaglia A, Chiorboli E, Grossini E, Mary DA, Molinari C, et al. Haemodynamic effects of the intravenous administration of growth hormone in anaesthetized pigs. Pflugers Arch 1998;436(2):159–67.PubMed
103.
go back to reference Rosenfeld CR. Distribution of cardiac output in ovine pregnancy. Am J Physiol 1977;232(3):H231–5.PubMed Rosenfeld CR. Distribution of cardiac output in ovine pregnancy. Am J Physiol 1977;232(3):H231–5.PubMed
104.
go back to reference Hanwell A, Linzell JL. The time course of cardiovascular changes in lactation in the rat. J Physiol 1973;233(1):93–109.PubMed Hanwell A, Linzell JL. The time course of cardiovascular changes in lactation in the rat. J Physiol 1973;233(1):93–109.PubMed
105.
go back to reference Yavuz D, Deyneli O, Akpinar I, Yildiz E, Gozu H, Sezgin O, et al. Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic pre-menopausal women. Eur J Endocrinol 2003;149(3):187–93.PubMed Yavuz D, Deyneli O, Akpinar I, Yildiz E, Gozu H, Sezgin O, et al. Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic pre-menopausal women. Eur J Endocrinol 2003;149(3):187–93.PubMed
106.
go back to reference Baldocchi RA, Tan L, King DS, Nicoll CS. Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: evidence that the cleaving enzyme is cathepsin D. Endocrinology 1993;133(2):935–8.PubMed Baldocchi RA, Tan L, King DS, Nicoll CS. Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: evidence that the cleaving enzyme is cathepsin D. Endocrinology 1993;133(2):935–8.PubMed
107.
go back to reference Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. Embo J 1995;14(15):3599–608.PubMed Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. Embo J 1995;14(15):3599–608.PubMed
108.
go back to reference Berchem G, Glondu M, Gleizes M, Brouillet JP, Vignon F, Garcia M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene 2002;21(38):5951–5.PubMed Berchem G, Glondu M, Gleizes M, Brouillet JP, Vignon F, Garcia M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene 2002;21(38):5951–5.PubMed
109.
go back to reference Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, et al. Cathepsin D processes human prolactin into multiple 16K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol Endocrinol 2004;18(10):2522–42.PubMed Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, et al. Cathepsin D processes human prolactin into multiple 16K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol Endocrinol 2004;18(10):2522–42.PubMed
110.
go back to reference Piwnica D, Fernandez I, Binart N, Touraine P, Kelly PA, Goffin V. A new mechanism for prolactin processing into 16K PRL by secreted cathepsin D. Mol Endocrinol 2006;20(12):3263–78.PubMed Piwnica D, Fernandez I, Binart N, Touraine P, Kelly PA, Goffin V. A new mechanism for prolactin processing into 16K PRL by secreted cathepsin D. Mol Endocrinol 2006;20(12):3263–78.PubMed
111.
go back to reference Erdmann S, Ricken AM, Merkwitz C, Struman I, Castino R, Hummitzsch K, et al. The Expression of prolactin and its cathepsin d-mediated cleavage in the bovine corpus luteum vary with the oestrous cycle. Am J Physiol Endocrinol Metab 2007;293(5):E1365–77.PubMed Erdmann S, Ricken AM, Merkwitz C, Struman I, Castino R, Hummitzsch K, et al. The Expression of prolactin and its cathepsin d-mediated cleavage in the bovine corpus luteum vary with the oestrous cycle. Am J Physiol Endocrinol Metab 2007;293(5):E1365–77.PubMed
112.
go back to reference Cosio G, Jeziorski MC, Lopez-Barrera F, De La Escalera GM, Clapp C. Hypoxia inhibits expression of prolactin and secretion of cathepsin-D by the GH4C1 pituitary adenoma cell line. Lab Invest 2003;83(11):1627–36.PubMed Cosio G, Jeziorski MC, Lopez-Barrera F, De La Escalera GM, Clapp C. Hypoxia inhibits expression of prolactin and secretion of cathepsin-D by the GH4C1 pituitary adenoma cell line. Lab Invest 2003;83(11):1627–36.PubMed
113.
go back to reference Lkhider M, Castino R, Bouguyon E, Isidoro C, Ollivier-Bousquet M. Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J Cell Sci 2004;117(Pt 21):5155–64.PubMed Lkhider M, Castino R, Bouguyon E, Isidoro C, Ollivier-Bousquet M. Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J Cell Sci 2004;117(Pt 21):5155–64.PubMed
114.
go back to reference Gonzalez C, Parra A, Ramirez-Peredo J, Garcia C, Rivera JC, Macotela Y, et al. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab Invest 2007;87(10):1009–17.PubMed Gonzalez C, Parra A, Ramirez-Peredo J, Garcia C, Rivera JC, Macotela Y, et al. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab Invest 2007;87(10):1009–17.PubMed
115.
go back to reference Ge G, Greenspan DS. Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res C Embryo Today 2006;78(1):47–68.PubMed Ge G, Greenspan DS. Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res C Embryo Today 2006;78(1):47–68.PubMed
116.
go back to reference Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 2004;16(5):558–64.PubMed Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 2004;16(5):558–64.PubMed
117.
go back to reference Khurana S, Kuns R, Ben-Jonathan N. Heparin-binding property of human prolactin: a novel aspect of prolactin biology. Endocrinology 1999;140(2):1026–9.PubMed Khurana S, Kuns R, Ben-Jonathan N. Heparin-binding property of human prolactin: a novel aspect of prolactin biology. Endocrinology 1999;140(2):1026–9.PubMed
118.
go back to reference Harper J, Klagsbrun M. Cartilage to bone-angiogenesis leads the way. Nat Med 1999;5(6):617–8.PubMed Harper J, Klagsbrun M. Cartilage to bone-angiogenesis leads the way. Nat Med 1999;5(6):617–8.PubMed
119.
go back to reference Corbacho AM, Nava G, Eiserich JP, Noris G, Macotela Y, Struman I, et al. Proteolytic cleavage confers nitric oxide synthase inducing activity upon prolactin. J Biol Chem 2000;275(18):13183–6.PubMed Corbacho AM, Nava G, Eiserich JP, Noris G, Macotela Y, Struman I, et al. Proteolytic cleavage confers nitric oxide synthase inducing activity upon prolactin. J Biol Chem 2000;275(18):13183–6.PubMed
120.
go back to reference Lorenson MY, Jacobs LS. Depletion of bovine pituitary prolactin by cysteamine involves a thiol:disulfide mechanism. Endocrinology 1984;115(4):1492–5.PubMed Lorenson MY, Jacobs LS. Depletion of bovine pituitary prolactin by cysteamine involves a thiol:disulfide mechanism. Endocrinology 1984;115(4):1492–5.PubMed
121.
go back to reference Galfione M, Luo W, Kim J, Hawke D, Kobayashi R, Clapp C, et al. Expression and purification of the angiogenesis inhibitor 16-kDa prolactin fragment from insect cells. Protein Expr Purif 2003;28(2):252–8.PubMed Galfione M, Luo W, Kim J, Hawke D, Kobayashi R, Clapp C, et al. Expression and purification of the angiogenesis inhibitor 16-kDa prolactin fragment from insect cells. Protein Expr Purif 2003;28(2):252–8.PubMed
122.
go back to reference Tabruyn SP, Sorlet CM, Rentier-Delrue F, Bours V, Weiner RI, Martial JA, et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol 2003;17(9):1815–23.PubMed Tabruyn SP, Sorlet CM, Rentier-Delrue F, Bours V, Weiner RI, Martial JA, et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol 2003;17(9):1815–23.PubMed
123.
go back to reference Aranda J, Rivera JC, Jeziorski MC, Riesgo-Escovar J, Nava G, Lopez-Barrera F, et al. Prolactins are natural inhibitors of angiogenesis in the retina. Invest Ophthalmol Vis Sci 2005;46(8):2947–53.PubMed Aranda J, Rivera JC, Jeziorski MC, Riesgo-Escovar J, Nava G, Lopez-Barrera F, et al. Prolactins are natural inhibitors of angiogenesis in the retina. Invest Ophthalmol Vis Sci 2005;46(8):2947–53.PubMed
124.
go back to reference Pan H, Nguyen NQ, Yoshida H, Bentzien F, Shaw LC, Rentier-Delrue F, et al. Molecular targeting of antiangiogenic factor 16K hPRL inhibits oxygen-induced retinopathy in mice. Invest Ophthalmol Vis Sci 2004;45(7):2413–9.PubMed Pan H, Nguyen NQ, Yoshida H, Bentzien F, Shaw LC, Rentier-Delrue F, et al. Molecular targeting of antiangiogenic factor 16K hPRL inhibits oxygen-induced retinopathy in mice. Invest Ophthalmol Vis Sci 2004;45(7):2413–9.PubMed
125.
go back to reference Bentzien F, Struman I, Martini JF, Martial J, Weiner R. Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(−/−) mice. Cancer Res 2001;61(19):7356–62.PubMed Bentzien F, Struman I, Martini JF, Martial J, Weiner R. Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(−/−) mice. Cancer Res 2001;61(19):7356–62.PubMed
126.
go back to reference Kim J, Luo W, Chen DT, Earley K, Tunstead J, Yu-Lee LY, et al. Antitumor activity of the 16-kDa prolactin fragment in prostate cancer. Cancer Res 2003;63(2):386–93.PubMed Kim J, Luo W, Chen DT, Earley K, Tunstead J, Yu-Lee LY, et al. Antitumor activity of the 16-kDa prolactin fragment in prostate cancer. Cancer Res 2003;63(2):386–93.PubMed
127.
go back to reference Nguyen NQ, Cornet A, Blacher S, Tabruyn SP, Foidart JM, Noel A, et al. Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16K hPRL. Mol Ther 2007;15(12):2094–100.PubMed Nguyen NQ, Cornet A, Blacher S, Tabruyn SP, Foidart JM, Noel A, et al. Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16K hPRL. Mol Ther 2007;15(12):2094–100.PubMed
128.
go back to reference Lee S-H, Kunz J, Lin S-H, Yu-Lee L-Y. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res 2007;67(22):11045–53.PubMed Lee S-H, Kunz J, Lin S-H, Yu-Lee L-Y. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res 2007;67(22):11045–53.PubMed
129.
go back to reference Martini JF, Piot C, Humeau LM, Struman I, Martial JA, Weiner RI. The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 2000;14(10):1536–49.PubMed Martini JF, Piot C, Humeau LM, Struman I, Martial JA, Weiner RI. The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 2000;14(10):1536–49.PubMed
130.
go back to reference Tabruyn SP, Nguyen NQ, Cornet AM, Martial JA, Struman I. The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0–G1 and the G2-M phases. Mol Endocrinol 2005;19(7):1932–42.PubMed Tabruyn SP, Nguyen NQ, Cornet AM, Martial JA, Struman I. The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0–G1 and the G2-M phases. Mol Endocrinol 2005;19(7):1932–42.PubMed
131.
go back to reference Lee SH, Nishino M, Mazumdar T, Garcia GE, Galfione M, Lee FL, et al. 16-kDa prolactin down-regulates inducible nitric oxide synthase expression through inhibition of the signal transducer and activator of transcription 1/IFN regulatory factor-1 pathway. Cancer Res 2005;65(17):7984–92.PubMed Lee SH, Nishino M, Mazumdar T, Garcia GE, Galfione M, Lee FL, et al. 16-kDa prolactin down-regulates inducible nitric oxide synthase expression through inhibition of the signal transducer and activator of transcription 1/IFN regulatory factor-1 pathway. Cancer Res 2005;65(17):7984–92.PubMed
132.
go back to reference D’Angelo G, Martini JF, Iiri T, Fantl WJ, Martial J, Weiner RI. 16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol 1999;13(5):692–704.PubMed D’Angelo G, Martini JF, Iiri T, Fantl WJ, Martial J, Weiner RI. 16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol 1999;13(5):692–704.PubMed
133.
go back to reference D’Angelo G, Struman I, Martial J, Weiner RI. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci U S A 1995;92(14):6374–8.PubMed D’Angelo G, Struman I, Martial J, Weiner RI. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci U S A 1995;92(14):6374–8.PubMed
134.
go back to reference Ziche M, Morbidelli L. Nitric oxide and angiogenesis. J Neurooncol 2000;50(1–2):139–48.PubMed Ziche M, Morbidelli L. Nitric oxide and angiogenesis. J Neurooncol 2000;50(1–2):139–48.PubMed
135.
go back to reference Lee H, Struman I, Clapp C, Martial J, Weiner RI. Inhibition of urokinase activity by the antiangiogenic factor 16K prolactin: activation of plasminogen activator inhibitor 1 expression. Endocrinology 1998;139(9):3696–703.PubMed Lee H, Struman I, Clapp C, Martial J, Weiner RI. Inhibition of urokinase activity by the antiangiogenic factor 16K prolactin: activation of plasminogen activator inhibitor 1 expression. Endocrinology 1998;139(9):3696–703.PubMed
136.
go back to reference Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, et al. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem 2002;277(50):48379–85.PubMed Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, et al. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem 2002;277(50):48379–85.PubMed
137.
go back to reference Abu-Soud HM, Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A 1993;90(22):10769–72.PubMed Abu-Soud HM, Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A 1993;90(22):10769–72.PubMed
138.
go back to reference Tabruyn SP, Sabatel C, Nguyen NQ, Verhaeghe C, Castermans K, Malvaux L, et al. The angiostatic 16K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol 2007;21(6):1422–9.PubMed Tabruyn SP, Sabatel C, Nguyen NQ, Verhaeghe C, Castermans K, Malvaux L, et al. The angiostatic 16K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol 2007;21(6):1422–9.PubMed
139.
go back to reference Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003;54(4):469–87.PubMed Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003;54(4):469–87.PubMed
140.
go back to reference Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 2002;53(4 Pt 1):503–14.PubMed Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 2002;53(4 Pt 1):503–14.PubMed
141.
go back to reference van der Vliet A, Eiserich JP, Shigenaga MK, Cross CE. Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? Am J Respir Crit Care Med 1999;160(1):1–9.PubMed van der Vliet A, Eiserich JP, Shigenaga MK, Cross CE. Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? Am J Respir Crit Care Med 1999;160(1):1–9.PubMed
142.
go back to reference Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays 2005;27(9):894–903.PubMed Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays 2005;27(9):894–903.PubMed
143.
go back to reference Baldocchi RA, Tan L, Nicoll CS. Processing of rat prolactin by rat tissue explants and serum in vitro. Endocrinology 1992;130(3):1653–9.PubMed Baldocchi RA, Tan L, Nicoll CS. Processing of rat prolactin by rat tissue explants and serum in vitro. Endocrinology 1992;130(3):1653–9.PubMed
144.
go back to reference Clapp C. Analysis of the proteolytic cleavage of prolactin by the mammary gland and liver of the rat: characterization of the cleaved and 16K forms. Endocrinology 1987;121(6):2055–64.PubMedCrossRef Clapp C. Analysis of the proteolytic cleavage of prolactin by the mammary gland and liver of the rat: characterization of the cleaved and 16K forms. Endocrinology 1987;121(6):2055–64.PubMedCrossRef
145.
go back to reference Lkhider M, Delpal S, Le Provost F, Ollivier-Bousquet M. Rat prolactin synthesis by lactating mammary epithelial cells. FEBS Lett 1997;401(2–3):117–22.PubMed Lkhider M, Delpal S, Le Provost F, Ollivier-Bousquet M. Rat prolactin synthesis by lactating mammary epithelial cells. FEBS Lett 1997;401(2–3):117–22.PubMed
146.
go back to reference Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM, et al. Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta 2000;291(2):157–70.PubMed Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM, et al. Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta 2000;291(2):157–70.PubMed
147.
go back to reference Owen JL, Iragavarapu-Charyulu V, Lopez DM. T cell-derived matrix metalloproteinase-9 in breast cancer: friend or foe? Breast Dis 2004;20:145–53.PubMed Owen JL, Iragavarapu-Charyulu V, Lopez DM. T cell-derived matrix metalloproteinase-9 in breast cancer: friend or foe? Breast Dis 2004;20:145–53.PubMed
148.
go back to reference Baldocchi RA, Tan L, Hom YK, Nicoll CS. Comparison of the ability of normal mouse mammary tissues and mammary adenocarcinoma to cleave rat prolactin. Proc Soc Exp Biol Med 1995;208(3):283–7.PubMed Baldocchi RA, Tan L, Hom YK, Nicoll CS. Comparison of the ability of normal mouse mammary tissues and mammary adenocarcinoma to cleave rat prolactin. Proc Soc Exp Biol Med 1995;208(3):283–7.PubMed
149.
go back to reference Liby K, Neltner B, Mohamet L, Menchen L, Ben-Jonathan N. Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth. Breast Cancer Res Treat 2003;79(2):241–52.PubMed Liby K, Neltner B, Mohamet L, Menchen L, Ben-Jonathan N. Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth. Breast Cancer Res Treat 2003;79(2):241–52.PubMed
150.
go back to reference Coskun U, Gunel N, Toruner FB, Sancak B, Onuk E, Bayram O, et al. Serum leptin, prolactin and vascular endothelial growth factor (VEGF) levels in patients with breast cancer. Neoplasma 2003;50(1):41–6.PubMed Coskun U, Gunel N, Toruner FB, Sancak B, Onuk E, Bayram O, et al. Serum leptin, prolactin and vascular endothelial growth factor (VEGF) levels in patients with breast cancer. Neoplasma 2003;50(1):41–6.PubMed
151.
go back to reference Sancak B, Coskun U, Gunel N, Onuk E, Cihan A, Karamercan A, et al. No association between serum levels of insulin-like growth factor-I, vascular endothelial growth factor, prolactin and clinicopathological characteristics of breast carcinoma after surgery. Intern Med J 2004;34(6):310–5.PubMed Sancak B, Coskun U, Gunel N, Onuk E, Cihan A, Karamercan A, et al. No association between serum levels of insulin-like growth factor-I, vascular endothelial growth factor, prolactin and clinicopathological characteristics of breast carcinoma after surgery. Intern Med J 2004;34(6):310–5.PubMed
152.
go back to reference Coleman-Krnacik S, Rosen JM. Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol Endocrinol 1994;8(2):218–29.PubMed Coleman-Krnacik S, Rosen JM. Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol Endocrinol 1994;8(2):218–29.PubMed
153.
go back to reference Shi YH, Bingle L, Gong LH, Wang YX, Corke KP, Fang WG. Basic FGF augments hypoxia induced HIF-1-alpha expression and VEGF release in T47D breast cancer cells. Pathology 2007;39(4):396–400.PubMed Shi YH, Bingle L, Gong LH, Wang YX, Corke KP, Fang WG. Basic FGF augments hypoxia induced HIF-1-alpha expression and VEGF release in T47D breast cancer cells. Pathology 2007;39(4):396–400.PubMed
154.
go back to reference Pietras RJ. Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J 2003;9(5):361–73.PubMed Pietras RJ. Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J 2003;9(5):361–73.PubMed
155.
go back to reference Furstenberger G, Morant R, Senn HJ. Insulin-like growth factors and breast cancer. Onkologie 2003;26(3):290–4.PubMed Furstenberger G, Morant R, Senn HJ. Insulin-like growth factors and breast cancer. Onkologie 2003;26(3):290–4.PubMed
156.
go back to reference Nakamura J, Lu Q, Aberdeen G, Albrecht E, Brodie A. The effect of estrogen on aromatase and vascular endothelial growth factor messenger ribonucleic acid in the normal nonhuman primate mammary gland. J Clin Endocrinol Metab 1999;84(4):1432–7.PubMed Nakamura J, Lu Q, Aberdeen G, Albrecht E, Brodie A. The effect of estrogen on aromatase and vascular endothelial growth factor messenger ribonucleic acid in the normal nonhuman primate mammary gland. J Clin Endocrinol Metab 1999;84(4):1432–7.PubMed
157.
go back to reference Calvo A, Yokoyama Y, Smith LE, Ali I, Shih SC, Feldman AL, et al. Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin. Int J Cancer 2002;101(3):224–34.PubMed Calvo A, Yokoyama Y, Smith LE, Ali I, Shih SC, Feldman AL, et al. Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin. Int J Cancer 2002;101(3):224–34.PubMed
158.
go back to reference Benson JR. Role of transforming growth factor beta in breast carcinogenesis. Lancet Oncol 2004;5(4):229–39.PubMed Benson JR. Role of transforming growth factor beta in breast carcinogenesis. Lancet Oncol 2004;5(4):229–39.PubMed
159.
go back to reference Indraccolo S, Gola E, Rosato A, Minuzzo S, Habeler W, Tisato V, et al. Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells. Gene Ther 2002;9(13):867–78.PubMed Indraccolo S, Gola E, Rosato A, Minuzzo S, Habeler W, Tisato V, et al. Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells. Gene Ther 2002;9(13):867–78.PubMed
160.
go back to reference Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999;59(14):3308–12.PubMed Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999;59(14):3308–12.PubMed
Metadata
Title
Role of Prolactin and Vasoinhibins in the Regulation of Vascular Function in Mammary Gland
Authors
Carmen Clapp
Stéphanie Thebault
Gonzalo Martínez de la Escalera
Publication date
01-03-2008
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 1/2008
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-008-9067-7

Other articles of this Issue 1/2008

Journal of Mammary Gland Biology and Neoplasia 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine