Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Role of in vivo dosimetry with radiochromic films for dose verification during cutaneous radiation therapy

Authors: Hong-Wei Liu, James Gräfe, Rao Khan, Ivo Olivotto, J Eduardo Villarreal Barajas

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Purpose

To evaluate the role of in vivo dosimetry with radiochromic films for dose verification in cutaneous radiation therapy (RT).

Methods

Five patients with 8 cutaneous or sub-cutaneous malignancies of the face, neck, trunk and extremity receiving RT were included. Orthovoltage, megavoltage photon therapies were applied based on anatomic location. The delivered dose for each target was measured with GAFCHROMIC EBT3TM film. The differences between the prescribed and measured doses in each target were analyzed based on the RT characteristics, target location and custom patient set up. The accuracy of EBT3TM film measurement was verified by measurements in a solid water phantom.

Results

The mean measured dose was -3.2% (-9.6% to +2.3%, P=0.86) lower than prescribed over 23 measurements. A wide range of under dose was detected in orthovoltage therapy when a gap existed between skin and a closed-ended applicator surface. The magnitude of the under dosage was correlated with the degree of the gap (P=0.01). The phantom study confirmed the accuracy of GAFCHROMIC EBT3TM film measurement and found that the low measured dose in orthovoltage therapy was caused by the deviation from the inverse square law (ISL) of the beam output at extended source surface distance (SSD) for closed-ended applicators.

Conclusions

A significantly low delivered dose for extended SSD orthovoltage therapy was demonstrated during cutaneous RT. The dose fall-off with distance is not completely compensated by the ISL standoff correction for orthovoltage therapy. GAFCHROMIC EBT3™ film is a useful and accurate tool for quality assurance of patients receiving a curative intended cutaneous RT.
Literature
1.
go back to reference Rahbari H, Mehregan AH. Basal cell epitheliomas in usual and unusual sites. J Cutan Pathol. 1979;6:425–31.PubMedCrossRef Rahbari H, Mehregan AH. Basal cell epitheliomas in usual and unusual sites. J Cutan Pathol. 1979;6:425–31.PubMedCrossRef
2.
go back to reference Wilder RB, Kittelson JM, Shimm DS. Basal cell carcinoma treated with radiation therapy. Cancer. 1991;68:2134–7.PubMedCrossRef Wilder RB, Kittelson JM, Shimm DS. Basal cell carcinoma treated with radiation therapy. Cancer. 1991;68:2134–7.PubMedCrossRef
3.
go back to reference Zablow AI, Eanelli TR, Sanfilippo LJ. Electron beam therapy for skin cancer of the head and neck. Head Neck. 1992;14:188–95.PubMedCrossRef Zablow AI, Eanelli TR, Sanfilippo LJ. Electron beam therapy for skin cancer of the head and neck. Head Neck. 1992;14:188–95.PubMedCrossRef
4.
go back to reference Childers BJ, Goldwyn RM, Ramos D, Chaffey J, Harris JR. Long-term results of irradiation for basal cell carcinoma of the skin of the nose. Plast Reconstr Surg. 1994;93:1169–73.PubMedCrossRef Childers BJ, Goldwyn RM, Ramos D, Chaffey J, Harris JR. Long-term results of irradiation for basal cell carcinoma of the skin of the nose. Plast Reconstr Surg. 1994;93:1169–73.PubMedCrossRef
5.
go back to reference Fitzpatrick PJ, Thompson GA, Easterbrook WM, Gallie BL, Payne DG. Basal and squamous cell carcinoma of the eyelids and their treatment by radiotherapy. Int J Radiat Oncol Biol Phys. 1984;10:449–54.PubMedCrossRef Fitzpatrick PJ, Thompson GA, Easterbrook WM, Gallie BL, Payne DG. Basal and squamous cell carcinoma of the eyelids and their treatment by radiotherapy. Int J Radiat Oncol Biol Phys. 1984;10:449–54.PubMedCrossRef
6.
go back to reference Locke J, Karimpour S, Young G, Lockett MA, Perez CA. Radiotherapy for epithelial skin cancer. Int J Radiat Oncol Biol Phys. 2001;51:748–55.PubMedCrossRef Locke J, Karimpour S, Young G, Lockett MA, Perez CA. Radiotherapy for epithelial skin cancer. Int J Radiat Oncol Biol Phys. 2001;51:748–55.PubMedCrossRef
7.
go back to reference Swanson EL, Amdur RJ, Mendenhall WM, Morris CG, Kirwan JM, Flowers F. Radiotherapy for basal cell carcinoma of the medial canthus region. Laryngoscope. 2009;119:2366–8.PubMedCrossRef Swanson EL, Amdur RJ, Mendenhall WM, Morris CG, Kirwan JM, Flowers F. Radiotherapy for basal cell carcinoma of the medial canthus region. Laryngoscope. 2009;119:2366–8.PubMedCrossRef
8.
go back to reference Krema H, Herrmann E, Albert-Green A, Payne D, Laperriere N, Chung C. Orthovoltage radiotherapy in the management of medial canthal basal cell carcinoma. Br J Ophthalmol. 2013;97:730–4.PubMedCrossRef Krema H, Herrmann E, Albert-Green A, Payne D, Laperriere N, Chung C. Orthovoltage radiotherapy in the management of medial canthal basal cell carcinoma. Br J Ophthalmol. 2013;97:730–4.PubMedCrossRef
9.
10.
go back to reference Villarreal-Barajas JE, Khan RF. Energy response of EBT3 radiochromic films: implications for dosimetry in kilovoltage range. J Appl Clin Med Phys. 2014;15:4439.PubMed Villarreal-Barajas JE, Khan RF. Energy response of EBT3 radiochromic films: implications for dosimetry in kilovoltage range. J Appl Clin Med Phys. 2014;15:4439.PubMed
11.
go back to reference Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, et al. AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Med Phys. 2001;28:868–93.PubMedCrossRef Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, et al. AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Med Phys. 2001;28:868–93.PubMedCrossRef
12.
go back to reference Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26:1847–70.PubMedCrossRef Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26:1847–70.PubMedCrossRef
13.
go back to reference Grafe J, Poirier Y, Jacso F, Khan R, Liu HW, Villarreal-Barajas JE. Assessing the deviation from the inverse square law for orthovoltage beams with closed-ended applicators. J Appl Clin Med Phys. 2014;15:4893.PubMed Grafe J, Poirier Y, Jacso F, Khan R, Liu HW, Villarreal-Barajas JE. Assessing the deviation from the inverse square law for orthovoltage beams with closed-ended applicators. J Appl Clin Med Phys. 2014;15:4893.PubMed
14.
go back to reference Casanova Borca V, Pasquino M, Russo G, Grosso P, Cante D, Sciacero P, et al. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J Appl Clin Med Phys. 2013;14:4111.PubMed Casanova Borca V, Pasquino M, Russo G, Grosso P, Cante D, Sciacero P, et al. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J Appl Clin Med Phys. 2013;14:4111.PubMed
15.
go back to reference Sorriaux J, Kacperek A, Rossomme S, Lee JA, Bertrand D, Vynckier S, et al. Evaluation of Gafchromic(R) EBT3 films characteristics in therapy photon, electron and proton beams. Phys Med. 2013;29:599–606.PubMedCrossRef Sorriaux J, Kacperek A, Rossomme S, Lee JA, Bertrand D, Vynckier S, et al. Evaluation of Gafchromic(R) EBT3 films characteristics in therapy photon, electron and proton beams. Phys Med. 2013;29:599–606.PubMedCrossRef
16.
go back to reference Li XA, Ma CM, Salhani D. Measurement of percentage depth dose and lateral beam profile for kilovoltage x-ray therapy beams. Phys Med Biol. 1997;42:2561–8.PubMedCrossRef Li XA, Ma CM, Salhani D. Measurement of percentage depth dose and lateral beam profile for kilovoltage x-ray therapy beams. Phys Med Biol. 1997;42:2561–8.PubMedCrossRef
17.
go back to reference Evans PA, Moloney AJ, Mountford PJ. Performance assessment of the Gulmay D3300 kilovoltage X-ray therapy unit. Br J Radiol. 2001;74:537–47.PubMedCrossRef Evans PA, Moloney AJ, Mountford PJ. Performance assessment of the Gulmay D3300 kilovoltage X-ray therapy unit. Br J Radiol. 2001;74:537–47.PubMedCrossRef
Metadata
Title
Role of in vivo dosimetry with radiochromic films for dose verification during cutaneous radiation therapy
Authors
Hong-Wei Liu
James Gräfe
Rao Khan
Ivo Olivotto
J Eduardo Villarreal Barajas
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-014-0325-0

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue