Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Commentary

Role of IL-16 in CD4+ T cell-mediated regulation of relapsing multiple sclerosis

Authors: Dusanka S Skundric, William W Cruikshank, Jelena Drulovic

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

In an important article published in Nature Medicine, Liu and colleagues described a novel CD4+ FoxA1+ regulatory T (Treg) cell population as distinct regulators of relapsing-remitting multiple sclerosis (RRMS) and experimental autoimmune encephalomyelitis (EAE). CD4+ FoxA1+ Treg cells appear as key regulators of responsiveness to therapy with interferon beta (IFN-β) in RRMS patients. Data indicate that CD4+FoxA1+ FOXP3 Treg cells develop within the central nervous system (CNS), and a potential of cerebellar granule neurons (CGN) in generation of CD4+FoxA1+PD-L1hiFOXP3 Treg cells from encephalitogenic CD4+ T cells.
A CD4 co-receptor specific ligand, IL-16, governs trafficking and biological properties of CD4+ T cells irrespective of their activation state. Functions of IL-16, relevant to Treg cells, include expansion of CD4+CD25+ T cells in long-term cultures with IL-2, de novo induction of FOXP-3 and migration of FOXP-3+ T cells. IL-16 is highly conserved across species including human and mouse. CGN and neurons in hippocampus contain neuronal-IL-16 (NIL-16), splice variant of immune IL-16, and express CD4 molecule. In a CD4-dependent manner, IL-16 supports cultured CGN survival.
Concomitant studies of RRMS lesions and corresponding MOG35–55-induced relapsing EAE in (B6 × SJL)F1 (H-2b/s) mice discovered similar roles of IL-16 in regulation of relapsing disease. In RRMS and EAE relapse, peak levels of IL-16 and active caspase-3 correlated with CD4+ T cell infiltration and levels of T-bet, Stat-1(Tyr701), and phosphorylated neurofilaments of axonal cytoskeleton [NF (M + H) P], suggesting a role of locally produced IL-16 in regulation of CD4+ Th1 inflammation and axonal damage, respectively. IL-16 was abundantly present in CD4+ T cells, followed by CD20+ B, CD8+ T, CD83+ dendritic cells, and Mac-1+ microglia. Apart from lesions, bioactive IL-16 was located in normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in RRMS brain and spinal cord.
A cytokine IL-16 emerges as an important regulator of relapsing MS and EAE. Better understanding of immune cell-neuron interactions mediated by IL-16 will foster development of more specific CD4+ T cell subset-targeted therapies to prevent or ameliorate progression of neuroinflammation and axonal and neuronal damage. Translational studies necessitate corresponding EAE models.
Literature
1.
go back to reference Liu Y, Carlsson R, Comabella M, Wang J, Kosicki M, Carrion B, et al. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med. 2014;20(3):272–82. doi:10.1038/nm.3485. Epub 2014 Feb 16.CrossRefPubMed Liu Y, Carlsson R, Comabella M, Wang J, Kosicki M, Carrion B, et al. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med. 2014;20(3):272–82. doi:10.1038/nm.3485. Epub 2014 Feb 16.CrossRefPubMed
3.
go back to reference Skundric DS, Zhou W, Cruikshank WW, Dai R. Increased levels of bioactive IL-16 correlate with disease activity during relapsing experimental autoimmune encephalomyelitis (EAE). J Autoimmun. 2005;25(3):206–14.CrossRefPubMed Skundric DS, Zhou W, Cruikshank WW, Dai R. Increased levels of bioactive IL-16 correlate with disease activity during relapsing experimental autoimmune encephalomyelitis (EAE). J Autoimmun. 2005;25(3):206–14.CrossRefPubMed
4.
go back to reference Skundric DS. Experimental models of relapsing-remitting multiple sclerosis: current concepts and perspective. Curr Neurovasc Res. 2005;2(4):349–62. Review.CrossRefPubMed Skundric DS. Experimental models of relapsing-remitting multiple sclerosis: current concepts and perspective. Curr Neurovasc Res. 2005;2(4):349–62. Review.CrossRefPubMed
5.
go back to reference Reindl M, Pauli F, Rostasy K, Berger T. The spectrum of MOG antibody-associated demyelinating diseases. Nat Rev Neurol. 2013;9(80):455–61. doi: 10.1038/nrneurol.2013.118.CrossRefPubMed Reindl M, Pauli F, Rostasy K, Berger T. The spectrum of MOG antibody-associated demyelinating diseases. Nat Rev Neurol. 2013;9(80):455–61. doi: 10.1038/nrneurol.2013.118.CrossRefPubMed
6.
go back to reference Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17:38–44. doi:10.1111/j.1750-3639.2006.00041.CrossRefPubMed Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17:38–44. doi:10.1111/j.1750-3639.2006.00041.CrossRefPubMed
7.
8.
go back to reference Cruikshank WW, Kornfeld H, Center DM. Interleukin-16. J Leukoc Biol. 2000;67(6):757–66.PubMed Cruikshank WW, Kornfeld H, Center DM. Interleukin-16. J Leukoc Biol. 2000;67(6):757–66.PubMed
9.
go back to reference Kurchner C, Yuzaki M. Neuronal interleukin-16 (NIL-16): a dual function PDZ domain protein. Neurosci. 1999;19:7770–80. Kurchner C, Yuzaki M. Neuronal interleukin-16 (NIL-16): a dual function PDZ domain protein. Neurosci. 1999;19:7770–80.
10.
go back to reference Croq F, Vizioli J, Tuzova M, Tahtouh M, Sautiere PE, Van Camp C, et al. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis. Glia. 2010;58(14):1649–62. doi:10.1002/glia.21036.CrossRefPubMed Croq F, Vizioli J, Tuzova M, Tahtouh M, Sautiere PE, Van Camp C, et al. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis. Glia. 2010;58(14):1649–62. doi:10.1002/glia.21036.CrossRefPubMed
11.
go back to reference Lynch EA, Heijens CA, Horst NF, Center DM, Cruikshank WW. Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: requirement of CCR5. J Immunol. 2003;171(10):4965–8.CrossRefPubMed Lynch EA, Heijens CA, Horst NF, Center DM, Cruikshank WW. Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: requirement of CCR5. J Immunol. 2003;171(10):4965–8.CrossRefPubMed
12.
go back to reference McFadden C, Morgan R, Rahangdale S, Green D, Yamasaki H, Center D, et al. Preferential migration of T regulatory cells induced by IL-16. J Immunol. 2007;179(10):643–5.CrossRef McFadden C, Morgan R, Rahangdale S, Green D, Yamasaki H, Center D, et al. Preferential migration of T regulatory cells induced by IL-16. J Immunol. 2007;179(10):643–5.CrossRef
13.
go back to reference Annibali V, Di Giovanni S, Cannoni S, Giugni E, Bomprezzi R, Mattei C, et al. Gene expression profiles reveal homeostatic dynamics during interferon-beta therapy in multiple sclerosis. Autoimmunity. 2007;40(1):16–22.CrossRefPubMed Annibali V, Di Giovanni S, Cannoni S, Giugni E, Bomprezzi R, Mattei C, et al. Gene expression profiles reveal homeostatic dynamics during interferon-beta therapy in multiple sclerosis. Autoimmunity. 2007;40(1):16–22.CrossRefPubMed
14.
go back to reference Nischwitz S, Faber H, Sämann PG, Domingues HS, Krishnamoorthy G, Knop M, et al. Interferon β-1a reduces increased interleukin-16 levels in multiple sclerosis patients. Acta Neurol Scand. 2014;130(1):46–52. doi:10.1111/ane.12215.CrossRefPubMed Nischwitz S, Faber H, Sämann PG, Domingues HS, Krishnamoorthy G, Knop M, et al. Interferon β-1a reduces increased interleukin-16 levels in multiple sclerosis patients. Acta Neurol Scand. 2014;130(1):46–52. doi:10.1111/ane.12215.CrossRefPubMed
15.
go back to reference Skundric DS, Zakarian V, Dai R, Lisak R, James J. Distinct immune regulation of the response to H-2b restricted epitope of MOG causes relapsing-remitting EAE in H-2b/s mice. J Neuroimmunol. 2003;136:34–45.CrossRefPubMed Skundric DS, Zakarian V, Dai R, Lisak R, James J. Distinct immune regulation of the response to H-2b restricted epitope of MOG causes relapsing-remitting EAE in H-2b/s mice. J Neuroimmunol. 2003;136:34–45.CrossRefPubMed
17.
go back to reference Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001;7:115–21.CrossRefPubMed Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001;7:115–21.CrossRefPubMed
18.
go back to reference Skundric DS, Dai R, Zakarian VL, Bessert D, Skoff RP, Cruikshank WW, et al. Anti-IL-16 therapy reduces CD4+ T-cell infiltration and improves paralysis and histopathology of relapsing EAE. J Neurosci Res. 2005;79(5):680–93.CrossRefPubMed Skundric DS, Dai R, Zakarian VL, Bessert D, Skoff RP, Cruikshank WW, et al. Anti-IL-16 therapy reduces CD4+ T-cell infiltration and improves paralysis and histopathology of relapsing EAE. J Neurosci Res. 2005;79(5):680–93.CrossRefPubMed
19.
go back to reference Messina S, Patti F. Gray matters in multiple sclerosis: cognitive impairment and structural MRI. Mult Scler Int. 2014;2014:609694.PubMedCentralPubMed Messina S, Patti F. Gray matters in multiple sclerosis: cognitive impairment and structural MRI. Mult Scler Int. 2014;2014:609694.PubMedCentralPubMed
20.
go back to reference Drulovic J, Kostic J, Mesaros S, Dujmovic Basuroski I, Stojsavljevic N, Kisic-Tepavcevic D, et al. Interferon-beta and disability progression in relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg. 2013;115 Suppl 1:S65–9. doi:10.1016/j.clineuro.2013.09.024.CrossRefPubMed Drulovic J, Kostic J, Mesaros S, Dujmovic Basuroski I, Stojsavljevic N, Kisic-Tepavcevic D, et al. Interferon-beta and disability progression in relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg. 2013;115 Suppl 1:S65–9. doi:10.1016/j.clineuro.2013.09.024.CrossRefPubMed
Metadata
Title
Role of IL-16 in CD4+ T cell-mediated regulation of relapsing multiple sclerosis
Authors
Dusanka S Skundric
William W Cruikshank
Jelena Drulovic
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0292-x

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue