Skip to main content
Top
Published in: Neurological Sciences 1/2011

01-02-2011 | Review Article

Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease

Authors: Hironori Yokoyama, Hiroto Uchida, Hayato Kuroiwa, Jiro Kasahara, Tsutomu Araki

Published in: Neurological Sciences | Issue 1/2011

Login to get access

Abstract

Dopaminergic neurons are selectively vulnerable to oxidative stress and inflammatory attack. The neuronal cell loss in the substantia nigra is associated with a glial response composed markedly of activated microglia and, to a lesser extent, of reactive astrocytes although these glial responses may be the source of neurotrophic factors and can protect against oxidative stress such as reactive oxygen species and reactive nitrogen species. However, the glial response can also mediate a variety of deleterious events related to the production of pro-inflammatory, pro-oxidant reactive species, prostaglandins, cytokines, and so on. In this review, we discuss the possible protective and deleterious effects of glial cells in the neurodegenerative diseases and examine how these factors may contribute to the pathogenesis of Parkinson’s disease. This review suggests that further investigation concerning glial reaction in Parkinson’s disease may lead to disease-modifying therapeutic approaches and may contribute to the pathogenesis of this disease.
Literature
1.
go back to reference Olanow CW, Schapira AH, Agid Y (2003) Neuroprotection for Parkinson’s disease: prospects and promises. Ann Neurol 53(Suppl 3):S1–S2CrossRefPubMed Olanow CW, Schapira AH, Agid Y (2003) Neuroprotection for Parkinson’s disease: prospects and promises. Ann Neurol 53(Suppl 3):S1–S2CrossRefPubMed
2.
go back to reference Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann NY Acad Sci 991:1–14CrossRefPubMed Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann NY Acad Sci 991:1–14CrossRefPubMed
3.
go back to reference Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87CrossRefPubMed Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87CrossRefPubMed
4.
5.
go back to reference Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145CrossRefPubMed Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145CrossRefPubMed
6.
go back to reference German DC, Manaye K, Smith WK et al (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514CrossRefPubMed German DC, Manaye K, Smith WK et al (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514CrossRefPubMed
7.
go back to reference Ma Y, Dhawan V, Mentis M et al (2002) Parametric mapping of [18F]FPCIT binding in early stage Parkinson’s disease: a PET study. Synapse 45:125–133CrossRefPubMed Ma Y, Dhawan V, Mentis M et al (2002) Parametric mapping of [18F]FPCIT binding in early stage Parkinson’s disease: a PET study. Synapse 45:125–133CrossRefPubMed
8.
go back to reference Langston SW, Altman NS, Hotchkiss JH (1993) Within and between sample comparisons of Gompertz parameters for Salmonella enteritidis and aerobic plate counts in chicken stored in air and modified atmosphere. Int J Food Microbiol 18:43–52CrossRefPubMed Langston SW, Altman NS, Hotchkiss JH (1993) Within and between sample comparisons of Gompertz parameters for Salmonella enteritidis and aerobic plate counts in chicken stored in air and modified atmosphere. Int J Food Microbiol 18:43–52CrossRefPubMed
9.
go back to reference Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956PubMed Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956PubMed
10.
11.
go back to reference Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494CrossRefPubMed Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494CrossRefPubMed
12.
go back to reference Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61:1191–1206CrossRefPubMed Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61:1191–1206CrossRefPubMed
13.
go back to reference Gluck MR, Youngster SK, Ramsay RR et al (1994) Studies on the characterization of the inhibitory mechanism of 4’-alkylated 1-methyl-4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem 63:655–661CrossRefPubMed Gluck MR, Youngster SK, Ramsay RR et al (1994) Studies on the characterization of the inhibitory mechanism of 4’-alkylated 1-methyl-4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem 63:655–661CrossRefPubMed
14.
go back to reference Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52CrossRefPubMed Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52CrossRefPubMed
15.
go back to reference Zigmond MJ, Stricker EM (1989) Animal models of parkinsonism using selective neurotoxins: clinical and basic implications. Int Rev Neurobiol 31:1–79CrossRefPubMed Zigmond MJ, Stricker EM (1989) Animal models of parkinsonism using selective neurotoxins: clinical and basic implications. Int Rev Neurobiol 31:1–79CrossRefPubMed
16.
go back to reference Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311:467–469CrossRefPubMed Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311:467–469CrossRefPubMed
17.
go back to reference Kurosaki R, Muramatsu Y, Kato H, Araki T (2004) Biochemical, behavioral and immunohistochemical alterations in MPTP-treated mouse model of Parkinson’s disease. Pharmacol Biochem Behav 78:143–153CrossRefPubMed Kurosaki R, Muramatsu Y, Kato H, Araki T (2004) Biochemical, behavioral and immunohistochemical alterations in MPTP-treated mouse model of Parkinson’s disease. Pharmacol Biochem Behav 78:143–153CrossRefPubMed
18.
go back to reference Yokoyama H, Takagi S, Watanabe Y et al (2008) Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J Neural Transm 115:831–842CrossRefPubMed Yokoyama H, Takagi S, Watanabe Y et al (2008) Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J Neural Transm 115:831–842CrossRefPubMed
19.
go back to reference Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170CrossRefPubMed Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170CrossRefPubMed
20.
go back to reference Damier P, Hirsch EC, Zhang P et al (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6CrossRefPubMed Damier P, Hirsch EC, Zhang P et al (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6CrossRefPubMed
21.
go back to reference Wilkin GP, Knott C (1999) Glia: a curtain raiser. Adv Neurol 80:3–7PubMed Wilkin GP, Knott C (1999) Glia: a curtain raiser. Adv Neurol 80:3–7PubMed
22.
go back to reference Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36CrossRefPubMed Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36CrossRefPubMed
23.
go back to reference Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287CrossRefPubMed Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287CrossRefPubMed
24.
go back to reference Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118CrossRefPubMed Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118CrossRefPubMed
25.
go back to reference Forno LS, DeLanney LE, Irwin I et al (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436CrossRefPubMed Forno LS, DeLanney LE, Irwin I et al (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436CrossRefPubMed
26.
go back to reference Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432CrossRefPubMed Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432CrossRefPubMed
27.
go back to reference Giulian D, Woodward J, Young DG et al (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8:2485–2490PubMed Giulian D, Woodward J, Young DG et al (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8:2485–2490PubMed
28.
go back to reference Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I et al (1988) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180CrossRef Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I et al (1988) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180CrossRef
29.
go back to reference Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409CrossRefPubMed Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409CrossRefPubMed
30.
go back to reference Aoki E, Yano R, Yokoyama H et al (2009) Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol 86:57–64CrossRefPubMed Aoki E, Yano R, Yokoyama H et al (2009) Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol 86:57–64CrossRefPubMed
31.
go back to reference Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17:182–190CrossRefPubMed Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17:182–190CrossRefPubMed
32.
go back to reference Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53(Suppl 3):S61–S70 (discussion S70–S72)CrossRefPubMed Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53(Suppl 3):S61–S70 (discussion S70–S72)CrossRefPubMed
33.
go back to reference Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381CrossRefPubMed Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381CrossRefPubMed
34.
go back to reference Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm Suppl 50:125–140PubMed Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm Suppl 50:125–140PubMed
35.
go back to reference Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150:119–131PubMed Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150:119–131PubMed
36.
go back to reference Hunot S, Brugg B, Ricard D et al (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94:7531–7536CrossRefPubMed Hunot S, Brugg B, Ricard D et al (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94:7531–7536CrossRefPubMed
37.
go back to reference Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132CrossRefPubMed Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132CrossRefPubMed
38.
go back to reference Saavedra A, Baltazar G, Santos P et al (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol Dis 23:533–542CrossRefPubMed Saavedra A, Baltazar G, Santos P et al (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol Dis 23:533–542CrossRefPubMed
39.
go back to reference Chen PS, Peng GS, Li G et al (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116–1125CrossRefPubMed Chen PS, Peng GS, Li G et al (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116–1125CrossRefPubMed
40.
go back to reference Petrova P, Raibekas A, Pevsner J et al (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20:173–188CrossRefPubMed Petrova P, Raibekas A, Pevsner J et al (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20:173–188CrossRefPubMed
41.
go back to reference Hirsch EC, Hunot S, Damier P et al (1999) Glial cell participation in the degeneration of dopaminergic neurons in Parkinson’s disease. Adv Neurol 80:9–18PubMed Hirsch EC, Hunot S, Damier P et al (1999) Glial cell participation in the degeneration of dopaminergic neurons in Parkinson’s disease. Adv Neurol 80:9–18PubMed
42.
go back to reference Chen Y, Vartiainen NE, Ying W et al (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610CrossRefPubMed Chen Y, Vartiainen NE, Ying W et al (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610CrossRefPubMed
43.
go back to reference Dobrenis K (1998) Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 16:320–344CrossRefPubMed Dobrenis K (1998) Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 16:320–344CrossRefPubMed
44.
go back to reference Kim WG, Mohney RP, Wilson B et al (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316PubMed Kim WG, Mohney RP, Wilson B et al (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316PubMed
45.
go back to reference Ouchi Y, Yoshikawa E, Sekine Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175CrossRefPubMed Ouchi Y, Yoshikawa E, Sekine Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175CrossRefPubMed
46.
go back to reference Gerhard A, Pavese N, Hotton G et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412CrossRefPubMed Gerhard A, Pavese N, Hotton G et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412CrossRefPubMed
47.
go back to reference Koutsilieri E, Scheller C, Grünblatt E et al (2002) Free radicals in Parkinson’s disease. J Neurol 249(Suppl 2):II1–II5PubMed Koutsilieri E, Scheller C, Grünblatt E et al (2002) Free radicals in Parkinson’s disease. J Neurol 249(Suppl 2):II1–II5PubMed
48.
go back to reference Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 3(Suppl 3):S26–S36 (discussion S36–S38)CrossRef Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 3(Suppl 3):S26–S36 (discussion S36–S38)CrossRef
49.
go back to reference Jana S, Maiti AK, Bagh MB et al (2007) Dopamine but not 3,4-dihydroxy phenylacetic acid (DOPAC) inhibits brain respiratory chain activity by autoxidation and mitochondria catalyzed oxidation to quinone products: implications in Parkinson’s disease. Brain Res 1139:195–200CrossRefPubMed Jana S, Maiti AK, Bagh MB et al (2007) Dopamine but not 3,4-dihydroxy phenylacetic acid (DOPAC) inhibits brain respiratory chain activity by autoxidation and mitochondria catalyzed oxidation to quinone products: implications in Parkinson’s disease. Brain Res 1139:195–200CrossRefPubMed
50.
go back to reference McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604CrossRefPubMed McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604CrossRefPubMed
51.
go back to reference Sugama S, Yang L, Cho BP et al (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294CrossRefPubMed Sugama S, Yang L, Cho BP et al (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294CrossRefPubMed
52.
go back to reference Cicchetti F, Brownell AL, Williams K et al (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998CrossRefPubMed Cicchetti F, Brownell AL, Williams K et al (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998CrossRefPubMed
53.
go back to reference Depino AM, Earl C, Kaczmarczyk E et al (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18:2731–2742CrossRefPubMed Depino AM, Earl C, Kaczmarczyk E et al (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18:2731–2742CrossRefPubMed
54.
go back to reference Iravani MM, Kashefi K, Mander P et al (2002) Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110:49–58CrossRefPubMed Iravani MM, Kashefi K, Mander P et al (2002) Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110:49–58CrossRefPubMed
55.
go back to reference Arimoto T, Bing G (2003) Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis 12:35–45CrossRefPubMed Arimoto T, Bing G (2003) Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis 12:35–45CrossRefPubMed
56.
go back to reference Ryu JK, Shin WH, Kim J et al (2002) Trisialoganglioside GT1b induces in vivo degeneration of nigral dopaminergic neurons: role of microglia. Glia 38:15–23CrossRefPubMed Ryu JK, Shin WH, Kim J et al (2002) Trisialoganglioside GT1b induces in vivo degeneration of nigral dopaminergic neurons: role of microglia. Glia 38:15–23CrossRefPubMed
57.
go back to reference He Y, Le WD, Appel SH (2002) Role of Fcgamma receptors in nigral cell injury induced by Parkinson disease immunoglobulin injection into mouse substantia nigra. Exp Neurol 176:322–327CrossRefPubMed He Y, Le WD, Appel SH (2002) Role of Fcgamma receptors in nigral cell injury induced by Parkinson disease immunoglobulin injection into mouse substantia nigra. Exp Neurol 176:322–327CrossRefPubMed
58.
go back to reference Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462CrossRefPubMed Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462CrossRefPubMed
59.
go back to reference Greenamyre JT, MacKenzie G, Peng TI, Stephans SE (1999) Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp 66:85–97PubMed Greenamyre JT, MacKenzie G, Peng TI, Stephans SE (1999) Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp 66:85–97PubMed
60.
go back to reference McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291PubMed McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291PubMed
61.
go back to reference Burke RE, Antonelli M, Sulzer D (1998) Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem 71:517–525CrossRefPubMed Burke RE, Antonelli M, Sulzer D (1998) Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem 71:517–525CrossRefPubMed
62.
go back to reference Kordower JH, Palfi S, Chen EY et al (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46:419–424CrossRefPubMed Kordower JH, Palfi S, Chen EY et al (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46:419–424CrossRefPubMed
63.
go back to reference Gash DM, Zhang Z, Ovadia A et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255CrossRefPubMed Gash DM, Zhang Z, Ovadia A et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255CrossRefPubMed
64.
go back to reference Eberhardt O, Coelln RV, Kugler S et al (2000) Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 20:9126–9134PubMed Eberhardt O, Coelln RV, Kugler S et al (2000) Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 20:9126–9134PubMed
65.
go back to reference Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773CrossRefPubMed Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773CrossRefPubMed
66.
go back to reference Frim DM, Uhler TA, Galpern WR et al (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91:5104–5108CrossRefPubMed Frim DM, Uhler TA, Galpern WR et al (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91:5104–5108CrossRefPubMed
67.
go back to reference Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15:7810–7820PubMed Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15:7810–7820PubMed
68.
go back to reference Przedborski S, Jackson-Lewis V, Djaldetti R et al (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142PubMed Przedborski S, Jackson-Lewis V, Djaldetti R et al (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142PubMed
69.
go back to reference Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911CrossRefPubMed Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911CrossRefPubMed
70.
go back to reference Benazzouz A, Piallat B, Ni ZG et al (2000) Implication of the subthalamic nucleus in the pathophysiology and pathogenesis of Parkinson’s disease. Cell Transplant 9:215–221PubMed Benazzouz A, Piallat B, Ni ZG et al (2000) Implication of the subthalamic nucleus in the pathophysiology and pathogenesis of Parkinson’s disease. Cell Transplant 9:215–221PubMed
71.
go back to reference DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed
72.
go back to reference Yamada T, McGeer PL, McGeer EG (1992) Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol 84:100–104CrossRefPubMed Yamada T, McGeer PL, McGeer EG (1992) Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol 84:100–104CrossRefPubMed
73.
go back to reference Yamada T, McGeer PL, McGeer EG (1992) Some immunohistochemical features of argyrophilic grain dementia with normal cortical choline acetyltransferase levels but extensive subcortical pathology and markedly reduced dopamine. J Geriatr Psychiatry Neurol 5:3–13PubMed Yamada T, McGeer PL, McGeer EG (1992) Some immunohistochemical features of argyrophilic grain dementia with normal cortical choline acetyltransferase levels but extensive subcortical pathology and markedly reduced dopamine. J Geriatr Psychiatry Neurol 5:3–13PubMed
74.
go back to reference Hisahara S, Okano H, Miura M (2003) Caspase-mediated oligodendrocyte cell death in the pathogenesis of autoimmune demyelination. Neurosci Res 46:387–397CrossRefPubMed Hisahara S, Okano H, Miura M (2003) Caspase-mediated oligodendrocyte cell death in the pathogenesis of autoimmune demyelination. Neurosci Res 46:387–397CrossRefPubMed
75.
go back to reference Melcangi RC, Magnaghi V, Cavarretta I et al (1998) Effects of steroid hormones on gene expression of glial markers in the central and peripheral nervous system: variations induced by aging. Exp Gerontol 33:827–836CrossRefPubMed Melcangi RC, Magnaghi V, Cavarretta I et al (1998) Effects of steroid hormones on gene expression of glial markers in the central and peripheral nervous system: variations induced by aging. Exp Gerontol 33:827–836CrossRefPubMed
76.
go back to reference Tanaka J, Okuma Y, Tomobe K, Nomura Y (2005) The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull 28:615–618CrossRefPubMed Tanaka J, Okuma Y, Tomobe K, Nomura Y (2005) The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull 28:615–618CrossRefPubMed
77.
go back to reference Irving EA, Yatsushiro K, McCulloch J, Dewar D (1997) Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab 17:612–622CrossRefPubMed Irving EA, Yatsushiro K, McCulloch J, Dewar D (1997) Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab 17:612–622CrossRefPubMed
78.
go back to reference McCracken E, Fowler JH, Dewar D et al (2002) Grey matter and white matter ischemic damage is reduced by the competitive AMPA receptor antagonist, SPD 502. J Cereb Blood Flow Metab 22:1090–1097CrossRefPubMed McCracken E, Fowler JH, Dewar D et al (2002) Grey matter and white matter ischemic damage is reduced by the competitive AMPA receptor antagonist, SPD 502. J Cereb Blood Flow Metab 22:1090–1097CrossRefPubMed
79.
go back to reference Gresle MM, Jarrott B, Jones NM, Callaway JK (2006) Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res 1110:13–22CrossRefPubMed Gresle MM, Jarrott B, Jones NM, Callaway JK (2006) Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res 1110:13–22CrossRefPubMed
80.
go back to reference Dewar D, Dawson D (1995) Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study. Brain Res 684:70–78CrossRefPubMed Dewar D, Dawson D (1995) Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study. Brain Res 684:70–78CrossRefPubMed
81.
go back to reference Imai H, Masayasu H, Dewar D et al (2001) Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 32:2149–2154CrossRefPubMed Imai H, Masayasu H, Dewar D et al (2001) Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 32:2149–2154CrossRefPubMed
82.
go back to reference Vlkolinský R, Cairns N, Fountoulakis M, Lubec G (2001) Decreased brain levels of 2′, 3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging 22:547–553CrossRefPubMed Vlkolinský R, Cairns N, Fountoulakis M, Lubec G (2001) Decreased brain levels of 2′, 3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging 22:547–553CrossRefPubMed
83.
go back to reference Takagi S, Hayakawa N, Kimoto H et al (2007) Damage to oligodendrocytes in the striatum after MPTP neurotoxicity in mice. J Neural Transm 114:1553–1557CrossRefPubMed Takagi S, Hayakawa N, Kimoto H et al (2007) Damage to oligodendrocytes in the striatum after MPTP neurotoxicity in mice. J Neural Transm 114:1553–1557CrossRefPubMed
Metadata
Title
Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease
Authors
Hironori Yokoyama
Hiroto Uchida
Hayato Kuroiwa
Jiro Kasahara
Tsutomu Araki
Publication date
01-02-2011
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 1/2011
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-010-0424-0

Other articles of this Issue 1/2011

Neurological Sciences 1/2011 Go to the issue