Skip to main content
Top
Published in: CNS Drugs 1/2010

01-01-2010 | Leading Article

Role of Brain-Derived Neurotrophic Factor in the Aetiology of Depression

Implications for Pharmacological Treatment

Authors: Dr Eero Castrén, Tomi Rantamäki

Published in: CNS Drugs | Issue 1/2010

Login to get access

Abstract

Brain-derived neurotrophic factor (BDNF) is a critical mediator of activity-dependent neuronal plasticity in the cerebral cortex. Deficits in neurotrophic factors have been proposed to underlie mood disorders. However, recent evidence suggests that mood disorders may be produced by abnormalities in the adaptation of neural networks to environmental conditions. Antidepressants may act by enhancing neuronal plasticity, which allows environmental inputs to modify the neuronal networks to better fine tune the individual to the outside world. Recent observations in the visual cortex directly support this idea. According to the network hypothesis of depression, changes in the levels of neurotrophins including BDNF may not directly produce depression or an antidepressant effect, but neurotrophins may act as critical tools in the process whereby environmental conditions guide neuronal networks to better adapt to the environment. This hypothesis suggests that antidepressant drugs should not be used alone but should always be combined with rehabilitation to guide the plastic networks within the brain.
Literature
2.
go back to reference Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736PubMedCrossRef Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736PubMedCrossRef
3.
go back to reference McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 1999; 22: 295–318PubMedCrossRef McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 1999; 22: 295–318PubMedCrossRef
6.
go back to reference Cohen-Cory S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 2002; 298(5594): 770–6PubMedCrossRef Cohen-Cory S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 2002; 298(5594): 770–6PubMedCrossRef
7.
go back to reference Cohen-Cory S, Fraser SE. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 1995; 378(6553): 192–6PubMedCrossRef Cohen-Cory S, Fraser SE. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 1995; 378(6553): 192–6PubMedCrossRef
8.
go back to reference McAllister AK, Lo DC, Katz LC. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15(4): 791–803PubMedCrossRef McAllister AK, Lo DC, Katz LC. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15(4): 791–803PubMedCrossRef
9.
go back to reference Hu B, Nikolakopoulou AM, Cohen-Cory S. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Development 2005; 132(19): 4285–98PubMedCrossRef Hu B, Nikolakopoulou AM, Cohen-Cory S. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Development 2005; 132(19): 4285–98PubMedCrossRef
10.
go back to reference Bliss TVP, Collingride GL. A synaptic model of memory: long term potentiation in the hippocampus. Nature 1993; 361: 31–9PubMedCrossRef Bliss TVP, Collingride GL. A synaptic model of memory: long term potentiation in the hippocampus. Nature 1993; 361: 31–9PubMedCrossRef
11.
go back to reference Figurov A, Pozzo-Miller LD, Olafsson P, et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 1996; 381(6584): 706–9PubMedCrossRef Figurov A, Pozzo-Miller LD, Olafsson P, et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 1996; 381(6584): 706–9PubMedCrossRef
12.
go back to reference Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995; 267(5204): 1658–62PubMedCrossRef Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995; 267(5204): 1658–62PubMedCrossRef
13.
go back to reference Korte M, Carroll P, Wolf E, et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995; 92(19): 8856–60PubMedCrossRef Korte M, Carroll P, Wolf E, et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995; 92(19): 8856–60PubMedCrossRef
14.
go back to reference Lessmann V, Gottmann K, Heumann R. BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurones. Neuroreport 1994; 6(1): 21–5PubMedCrossRef Lessmann V, Gottmann K, Heumann R. BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurones. Neuroreport 1994; 6(1): 21–5PubMedCrossRef
15.
go back to reference Aicardi G, Argilli E, Cappello S, et al. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 2004; 101(44): 15788–92PubMedCrossRef Aicardi G, Argilli E, Cappello S, et al. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 2004; 101(44): 15788–92PubMedCrossRef
16.
go back to reference Castrén E, Pitkänen M, Sirviö J, et al. The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. NeuroReport 1993; 4(7): 895–8PubMedCrossRef Castrén E, Pitkänen M, Sirviö J, et al. The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. NeuroReport 1993; 4(7): 895–8PubMedCrossRef
17.
go back to reference Saarelainen T, Pussinen R, Koponen E, et al. Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse 2000; 38(1): 102–4PubMedCrossRef Saarelainen T, Pussinen R, Koponen E, et al. Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse 2000; 38(1): 102–4PubMedCrossRef
18.
go back to reference Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003; 72: 609–42PubMedCrossRef Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003; 72: 609–42PubMedCrossRef
19.
go back to reference Pang PT, Teng HK, Zaitsev E, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306(5695): 487–91PubMedCrossRef Pang PT, Teng HK, Zaitsev E, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306(5695): 487–91PubMedCrossRef
20.
go back to reference Bergami M, Santi S, Formaggio E, et al. Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 2008 Oct 20; 183(2): 213–21PubMedCrossRef Bergami M, Santi S, Formaggio E, et al. Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 2008 Oct 20; 183(2): 213–21PubMedCrossRef
21.
go back to reference Nagappan G, Zaitsev E, Senatorov Jr VV, et al. Control of extracellular cleavage of proBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 2009 Jan 27; 106(4): 1267–72PubMedCrossRef Nagappan G, Zaitsev E, Senatorov Jr VV, et al. Control of extracellular cleavage of proBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 2009 Jan 27; 106(4): 1267–72PubMedCrossRef
22.
go back to reference Yang J, Siao CJ, Nagappan G, et al. Neuronal release of proBDNF. Nat Neurosci 2009 Feb; 12(2): 113–5PubMedCrossRef Yang J, Siao CJ, Nagappan G, et al. Neuronal release of proBDNF. Nat Neurosci 2009 Feb; 12(2): 113–5PubMedCrossRef
23.
go back to reference Matsumoto T, Rauskolb S, Polack M, et al. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 2008; 11(2): 131–3PubMedCrossRef Matsumoto T, Rauskolb S, Polack M, et al. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 2008; 11(2): 131–3PubMedCrossRef
24.
go back to reference Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005; 6(8): 603–14PubMedCrossRef Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005; 6(8): 603–14PubMedCrossRef
25.
go back to reference Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007 Sep; 10(9): 1089–93PubMedCrossRef Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007 Sep; 10(9): 1089–93PubMedCrossRef
26.
go back to reference Hempstead BL. Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 2006 Feb; 3(1): 19–24PubMedCrossRef Hempstead BL. Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 2006 Feb; 3(1): 19–24PubMedCrossRef
27.
go back to reference Lee R, Kermani P, Teng KK, et al. Regulation of cell survival by secreted proneurotrophins. Science 2001 Nov 30; 294(5548): 1945–8PubMedCrossRef Lee R, Kermani P, Teng KK, et al. Regulation of cell survival by secreted proneurotrophins. Science 2001 Nov 30; 294(5548): 1945–8PubMedCrossRef
28.
go back to reference Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 1996; 383(6596): 166–8PubMedCrossRef Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 1996; 383(6596): 166–8PubMedCrossRef
29.
go back to reference Zagrebelsky M, Holz A, Dechant G, et al. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 2005 Oct 26; 25(43): 9989–99PubMedCrossRef Zagrebelsky M, Holz A, Dechant G, et al. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 2005 Oct 26; 25(43): 9989–99PubMedCrossRef
30.
go back to reference Rosch H, Schweigreiter R, Bonhoeffer T, et al. The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci U S A 2005; 102(20): 7362–7PubMedCrossRef Rosch H, Schweigreiter R, Bonhoeffer T, et al. The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci U S A 2005; 102(20): 7362–7PubMedCrossRef
31.
go back to reference Woo NH, Teng HK, Siao CJ, et al. Activation of p75 (NTR) by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 2005; 8(8): 1069–77PubMedCrossRef Woo NH, Teng HK, Siao CJ, et al. Activation of p75 (NTR) by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 2005; 8(8): 1069–77PubMedCrossRef
32.
go back to reference Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54(7): 597–606PubMedCrossRef Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54(7): 597–606PubMedCrossRef
33.
go back to reference Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59(12): 1116–27PubMedCrossRef Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59(12): 1116–27PubMedCrossRef
34.
go back to reference Castrén E, Voikar V, Rantamäki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7(1): 18–21PubMedCrossRef Castrén E, Voikar V, Rantamäki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7(1): 18–21PubMedCrossRef
36.
37.
go back to reference Karege F, Perret G, Bondolfi G, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109(2): 143–8PubMedCrossRef Karege F, Perret G, Bondolfi G, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109(2): 143–8PubMedCrossRef
38.
go back to reference Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 2008 Sep 15; 64(6): 527–32PubMedCrossRef Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 2008 Sep 15; 64(6): 527–32PubMedCrossRef
39.
go back to reference Chen B, Dowlatshahi D, MacQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50(4): 260–5PubMedCrossRef Chen B, Dowlatshahi D, MacQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50(4): 260–5PubMedCrossRef
40.
go back to reference Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112(2): 257–69PubMedCrossRef Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112(2): 257–69PubMedCrossRef
41.
go back to reference Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003; 23(17): 6690–4PubMed Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003; 23(17): 6690–4PubMed
42.
go back to reference Neves-Pereira M, Mundo E, Muglia P, et al. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71(3): 651–5PubMedCrossRef Neves-Pereira M, Mundo E, Muglia P, et al. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71(3): 651–5PubMedCrossRef
43.
go back to reference Sklar P, Gabriel SB, McInnis MG, et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol Psychiatry 2002; 7(6): 579–93PubMedCrossRef Sklar P, Gabriel SB, McInnis MG, et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol Psychiatry 2002; 7(6): 579–93PubMedCrossRef
44.
go back to reference Verhagen M, van der Meij A, van Deurzen PA, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry. Epub 2008 Oct 14 Verhagen M, van der Meij A, van Deurzen PA, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry. Epub 2008 Oct 14
45.
go back to reference Gratacos M, Gonzalez JR, Mercader JM, et al. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol Psychiatry 2007; 61(7): 911–22PubMedCrossRef Gratacos M, Gonzalez JR, Mercader JM, et al. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol Psychiatry 2007; 61(7): 911–22PubMedCrossRef
46.
go back to reference Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003; 23(1): 349–57PubMed Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003; 23(1): 349–57PubMed
47.
go back to reference Monteggia LM, Luikart B, Barrot M, et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 2007 Jan 15; 61(2): 187–97PubMedCrossRef Monteggia LM, Luikart B, Barrot M, et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 2007 Jan 15; 61(2): 187–97PubMedCrossRef
48.
go back to reference Chen ZY, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314(5796): 140–3PubMedCrossRef Chen ZY, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314(5796): 140–3PubMedCrossRef
49.
go back to reference Koponen E, Voikar V, Riekki R, et al. Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol Cell Neurosci 2004; 26(1): 166–81PubMedCrossRef Koponen E, Voikar V, Riekki R, et al. Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol Cell Neurosci 2004; 26(1): 166–81PubMedCrossRef
50.
go back to reference Koponen E, Lakso M, Castrén E. Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res 2004; 130(1–2): 81–94PubMedCrossRef Koponen E, Lakso M, Castrén E. Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res 2004; 130(1–2): 81–94PubMedCrossRef
51.
go back to reference Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008 Oct 16; 455(7215): 894–902PubMedCrossRef Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008 Oct 16; 455(7215): 894–902PubMedCrossRef
52.
go back to reference Rantamäki T, Hendolin P, Kankaanpää A, et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 2007; 32(10): 2152–62PubMedCrossRef Rantamäki T, Hendolin P, Kankaanpää A, et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 2007; 32(10): 2152–62PubMedCrossRef
53.
go back to reference Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15(11): 7539–47PubMed Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15(11): 7539–47PubMed
54.
go back to reference Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22(8): 3251–61PubMed Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22(8): 3251–61PubMed
55.
go back to reference Siuciak JA, Lewis DR, Wiegand SJ, et al. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56(1): 131–7PubMedCrossRef Siuciak JA, Lewis DR, Wiegand SJ, et al. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56(1): 131–7PubMedCrossRef
56.
go back to reference Koponen E, Rantamäki T, Voikar V, et al. Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol 2005; 25(6): 973–80PubMedCrossRef Koponen E, Rantamäki T, Voikar V, et al. Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol 2005; 25(6): 973–80PubMedCrossRef
57.
go back to reference Eisch AJ, Bolanos CA, De Wit J, et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54(10): 994–1005PubMedCrossRef Eisch AJ, Bolanos CA, De Wit J, et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54(10): 994–1005PubMedCrossRef
59.
go back to reference Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001; 7(5): 541–7PubMedCrossRef Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001; 7(5): 541–7PubMedCrossRef
60.
61.
go back to reference Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science 1996; 274(5290): 1133–8PubMedCrossRef Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science 1996; 274(5290): 1133–8PubMedCrossRef
62.
go back to reference Berardi N, Pizzorusso T, Ratto GM, et al. Molecular basis of plasticity in the visual cortex. Trends Neurosci 2003; 26(7): 369–78PubMedCrossRef Berardi N, Pizzorusso T, Ratto GM, et al. Molecular basis of plasticity in the visual cortex. Trends Neurosci 2003; 26(7): 369–78PubMedCrossRef
63.
go back to reference Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005; 6(11): 877–88PubMedCrossRef Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005; 6(11): 877–88PubMedCrossRef
64.
go back to reference Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001; 11(2): 240–9PubMedCrossRef Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001; 11(2): 240–9PubMedCrossRef
65.
go back to reference Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54(3): 338–52PubMedCrossRef Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54(3): 338–52PubMedCrossRef
66.
go back to reference Czeh B, Michaelis T, Watanabe T, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001; 98(22): 12796–801PubMedCrossRef Czeh B, Michaelis T, Watanabe T, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001; 98(22): 12796–801PubMedCrossRef
67.
go back to reference Fuchs E, Czeh B, Kole MH, et al. Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 2004; 14Suppl. 5: S481–90PubMedCrossRef Fuchs E, Czeh B, Kole MH, et al. Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 2004; 14Suppl. 5: S481–90PubMedCrossRef
68.
go back to reference Normann C, Schmitz D, Furmaier A, et al. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry 2007; 62(5): 373–80PubMedCrossRef Normann C, Schmitz D, Furmaier A, et al. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry 2007; 62(5): 373–80PubMedCrossRef
69.
go back to reference Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16(3): 239–49PubMedCrossRef Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16(3): 239–49PubMedCrossRef
70.
go back to reference Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132(4): 645–60PubMedCrossRef Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132(4): 645–60PubMedCrossRef
71.
go back to reference Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20(24): 9104–10PubMed Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20(24): 9104–10PubMed
72.
go back to reference Madsen TM, Treschow A, Bengzon J, et al. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47(12): 1043–9PubMedCrossRef Madsen TM, Treschow A, Bengzon J, et al. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47(12): 1043–9PubMedCrossRef
73.
74.
go back to reference Sairanen M, Lucas G, Ernfors P, et al. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 2005; 25(5): 1089–94PubMedCrossRef Sairanen M, Lucas G, Ernfors P, et al. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 2005; 25(5): 1089–94PubMedCrossRef
75.
go back to reference Li Y, Luikart BW, Birnbaum S, et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 2008 Aug 14; 59(3): 399–412PubMedCrossRef Li Y, Luikart BW, Birnbaum S, et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 2008 Aug 14; 59(3): 399–412PubMedCrossRef
76.
go back to reference Bergami M, Rimondini R, Santi S, et al. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci U S A 2008 Oct 7; 105(40): 15570–5PubMedCrossRef Bergami M, Rimondini R, Santi S, et al. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci U S A 2008 Oct 7; 105(40): 15570–5PubMedCrossRef
77.
go back to reference Wu X, Castrén E. Co-treatment with diazepam prevents the effects of fluoxetine on the proliferation and survival of hippocampal dentate granule cells. Biol Psychiatry 2009; 66(1): 5–8PubMedCrossRef Wu X, Castrén E. Co-treatment with diazepam prevents the effects of fluoxetine on the proliferation and survival of hippocampal dentate granule cells. Biol Psychiatry 2009; 66(1): 5–8PubMedCrossRef
78.
go back to reference Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301(5634): 805–9PubMedCrossRef Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301(5634): 805–9PubMedCrossRef
79.
go back to reference Meshi D, Drew MR, Saxe M, et al. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 2006; 9(6): 729–31PubMedCrossRef Meshi D, Drew MR, Saxe M, et al. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 2006; 9(6): 729–31PubMedCrossRef
80.
go back to reference Holick KA, Lee DC, Hen R, et al. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 2008; 33(2): 406–17PubMedCrossRef Holick KA, Lee DC, Hen R, et al. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 2008; 33(2): 406–17PubMedCrossRef
81.
go back to reference Bessa JM, Ferreira D, Melo I, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 2009; 14(8): 764–73PubMedCrossRef Bessa JM, Ferreira D, Melo I, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 2009; 14(8): 764–73PubMedCrossRef
82.
go back to reference Sairanen M, O’Leary OF, Knuuttila JE, et al. Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 2007; 144(1): 368–74PubMedCrossRef Sairanen M, O’Leary OF, Knuuttila JE, et al. Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 2007; 144(1): 368–74PubMedCrossRef
83.
go back to reference Wang JW, David DJ, Monckton JE, et al. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 2008; 28(6): 1374–84PubMedCrossRef Wang JW, David DJ, Monckton JE, et al. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 2008; 28(6): 1374–84PubMedCrossRef
84.
go back to reference Hajszan T, MacLusky NJ, Leranth C. Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 2005; 21(5): 1299–303PubMedCrossRef Hajszan T, MacLusky NJ, Leranth C. Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 2005; 21(5): 1299–303PubMedCrossRef
85.
go back to reference O’Leary OF, Wu X, Castren E. Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. Psychoneuroendocrinology 2009 Apr; 34(3): 367–81PubMedCrossRef O’Leary OF, Wu X, Castren E. Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. Psychoneuroendocrinology 2009 Apr; 34(3): 367–81PubMedCrossRef
86.
go back to reference Varea E, Blasco-Ibanez JM, Gomez-Climent MA, et al. Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 2007; 32(4): 803–12PubMedCrossRef Varea E, Blasco-Ibanez JM, Gomez-Climent MA, et al. Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 2007; 32(4): 803–12PubMedCrossRef
87.
go back to reference Rocher C, Spedding M, Munoz C, et al. Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 2004; 14(2): 224–9PubMedCrossRef Rocher C, Spedding M, Munoz C, et al. Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 2004; 14(2): 224–9PubMedCrossRef
88.
go back to reference Holderbach R, Clark K, Moreau JL, et al. Enhanced long-term synaptic depression in an animal model of depression. Biol Psychiatry 2007; 62(1): 92–100PubMedCrossRef Holderbach R, Clark K, Moreau JL, et al. Enhanced long-term synaptic depression in an animal model of depression. Biol Psychiatry 2007; 62(1): 92–100PubMedCrossRef
89.
go back to reference Maya Vetencourt JF, Sale A, Viegi A, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008; 320(5874): 385–8PubMedCrossRef Maya Vetencourt JF, Sale A, Viegi A, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008; 320(5874): 385–8PubMedCrossRef
90.
go back to reference Kaneko M, Hanover JL, England PM, et al. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat Neurosci 2008; 11(4): 497–504PubMedCrossRef Kaneko M, Hanover JL, England PM, et al. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat Neurosci 2008; 11(4): 497–504PubMedCrossRef
Metadata
Title
Role of Brain-Derived Neurotrophic Factor in the Aetiology of Depression
Implications for Pharmacological Treatment
Authors
Dr Eero Castrén
Tomi Rantamäki
Publication date
01-01-2010
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 1/2010
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/11530010-000000000-00000

Other articles of this Issue 1/2010

CNS Drugs 1/2010 Go to the issue

Adis Drug Evaluation

Blonanserin