Skip to main content
Top
Published in: Radiological Physics and Technology 1/2013

01-01-2013

Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization

Authors: Takashi Ohnishi, Masahiko Suzuki, Tatsuya Kobayashi, Shinji Naomoto, Tomoyuki Sukegawa, Atsushi Nawata, Hideaki Haneishi

Published in: Radiological Physics and Technology | Issue 1/2013

Login to get access

Abstract

Previously, we proposed a 2D/3D registration method that uses Powell’s algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell’s algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell’s algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell’s algorithm with the Nelder–Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell’s algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell’s algorithm alone.
Literature
1.
go back to reference Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Maeda D, et al. Development of three-dimensional kinematic analysis system for artificial knee implants using X-ray fluoroscopic imaging. Jpn J Radiol Tech. 2005;61(1):79–87. (In Japanese). Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Maeda D, et al. Development of three-dimensional kinematic analysis system for artificial knee implants using X-ray fluoroscopic imaging. Jpn J Radiol Tech. 2005;61(1):79–87. (In Japanese).
2.
go back to reference Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Med Imag. 2003;22(12):1561–74.CrossRef Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Med Imag. 2003;22(12):1561–74.CrossRef
3.
go back to reference Matthew CN, Richard DK, Mohamed RM, Douglas AD, Matthew RA. In vivo three-dimensional determination of the effectiveness of the osteoarthritic knee brace. J Bone Jt Surg. 2005;87:114–9.CrossRef Matthew CN, Richard DK, Mohamed RM, Douglas AD, Matthew RA. In vivo three-dimensional determination of the effectiveness of the osteoarthritic knee brace. J Bone Jt Surg. 2005;87:114–9.CrossRef
4.
go back to reference Ohnishi T, Suzuki M, Nawata A, Naomoto S, Iwasaki T, Haneishi H. Three-dimensional motion study of femur, tibia, and patella at the knee joint from bi-plane fluoroscopy and CT images. Radiol Phys Technol. 2010;3:151–8.PubMedCrossRef Ohnishi T, Suzuki M, Nawata A, Naomoto S, Iwasaki T, Haneishi H. Three-dimensional motion study of femur, tibia, and patella at the knee joint from bi-plane fluoroscopy and CT images. Radiol Phys Technol. 2010;3:151–8.PubMedCrossRef
5.
go back to reference Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43(6):638–49.PubMedCrossRef Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43(6):638–49.PubMedCrossRef
6.
go back to reference Watanabe T, Yamazaki T, Sugamoto K, Tomita T, Hashimoto H, Maeda D, et al. In vivo kinematics of mobile-bearing knee arthroplasty in deep knee bending motion. J Orthop Res. 2004;22:1044–9.PubMedCrossRef Watanabe T, Yamazaki T, Sugamoto K, Tomita T, Hashimoto H, Maeda D, et al. In vivo kinematics of mobile-bearing knee arthroplasty in deep knee bending motion. J Orthop Res. 2004;22:1044–9.PubMedCrossRef
7.
go back to reference Bingham J, Li G. An Optimized image matching method for determining in vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng. 2006;128(4):588–95.PubMedCrossRef Bingham J, Li G. An Optimized image matching method for determining in vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng. 2006;128(4):588–95.PubMedCrossRef
8.
go back to reference Yamazaki T, Watanabe T, Tomita T, Sugamoto K, Ogasawara M, Sato Y, et al. 3D kinematics of normal knee using X-ray fluoroscopy and CT images. Proc IFMBE. 2007;14:2793–6.CrossRef Yamazaki T, Watanabe T, Tomita T, Sugamoto K, Ogasawara M, Sato Y, et al. 3D kinematics of normal knee using X-ray fluoroscopy and CT images. Proc IFMBE. 2007;14:2793–6.CrossRef
9.
go back to reference Rahman H, Fregly BJ. Banks SA. Summer Bioeng Conf: Accurate measurement of three-dimensional natural knee kinematics using single-plane fluoroscopy; 2003. Rahman H, Fregly BJ. Banks SA. Summer Bioeng Conf: Accurate measurement of three-dimensional natural knee kinematics using single-plane fluoroscopy; 2003.
10.
go back to reference Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Can magnetic resonance imaging—derived bone model be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res. 2007;25(7):867–72.PubMedCrossRef Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Can magnetic resonance imaging—derived bone model be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res. 2007;25(7):867–72.PubMedCrossRef
11.
go back to reference Komistec RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.CrossRef Komistec RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.CrossRef
12.
go back to reference Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Related Res. 2001;388:157–66.CrossRef Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Related Res. 2001;388:157–66.CrossRef
13.
go back to reference Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26(4):428–34.PubMedCrossRef Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26(4):428–34.PubMedCrossRef
14.
go back to reference Li G, Papannagari R, Nha KW, DeFrate LE, Gill TJ, Rubash HE. The coupled motion of the femur and patella during in vivo weightbearing knee flexion. J Biomech Eng. 2007;129(6):937–43.PubMedCrossRef Li G, Papannagari R, Nha KW, DeFrate LE, Gill TJ, Rubash HE. The coupled motion of the femur and patella during in vivo weightbearing knee flexion. J Biomech Eng. 2007;129(6):937–43.PubMedCrossRef
15.
go back to reference Nha KW, Papannagari R, Gill TJ, Van de Velde SK, Freiberg AA, Rubash HE, et al. In vivo patellar tracking: clinical motions and patellofemoral indices. J Orthop Res. 2008;26(8):1067–74.PubMedCrossRef Nha KW, Papannagari R, Gill TJ, Van de Velde SK, Freiberg AA, Rubash HE, et al. In vivo patellar tracking: clinical motions and patellofemoral indices. J Orthop Res. 2008;26(8):1067–74.PubMedCrossRef
16.
go back to reference Penney GP, Weese J, Little JA, Desmedt P, Hill DLG, Hawkes DJ. A comparison of similarity measures for use in 2D–3D medical image registration. IEEE Med Imag. 1998;17(4):586–95.CrossRef Penney GP, Weese J, Little JA, Desmedt P, Hill DLG, Hawkes DJ. A comparison of similarity measures for use in 2D–3D medical image registration. IEEE Med Imag. 1998;17(4):586–95.CrossRef
17.
go back to reference Nakajima Y, Tashiro T, Sugano N, Yonenobu K, Koyama T, Maeda Y, et al. Fluoroscopic bone fragment tracking for surgical navigation in femur fracture reduction by incorporating optical tracking of hip joint rotation center. IEEE Trans Biomed Eng. 2007;54:1703–6.PubMedCrossRef Nakajima Y, Tashiro T, Sugano N, Yonenobu K, Koyama T, Maeda Y, et al. Fluoroscopic bone fragment tracking for surgical navigation in femur fracture reduction by incorporating optical tracking of hip joint rotation center. IEEE Trans Biomed Eng. 2007;54:1703–6.PubMedCrossRef
18.
go back to reference Zheng GY. Effective incorporation of spatial information in a mutual information based 3D–2D registration of a CT volume to X-ray images. In: 11th MICCAI LNCS. vol. 5242. 2008. p. 922–9. Zheng GY. Effective incorporation of spatial information in a mutual information based 3D–2D registration of a CT volume to X-ray images. In: 11th MICCAI LNCS. vol. 5242. 2008. p. 922–9.
19.
go back to reference Zheng GY, Zhang X, Jonic S, Thevonaz P, Unser M, Nolte LP. Point similarity measures based on MRF modeling of difference images for spline-based 2D–3D rigid registration of X-ray fluoroscopy to CT images. In: 3rd WBIR LNCS. vol. 4057. 2006. p. 186–94. Zheng GY, Zhang X, Jonic S, Thevonaz P, Unser M, Nolte LP. Point similarity measures based on MRF modeling of difference images for spline-based 2D–3D rigid registration of X-ray fluoroscopy to CT images. In: 3rd WBIR LNCS. vol. 4057. 2006. p. 186–94.
20.
go back to reference Shekhar R, Zagrodsky V. Mutual information-based rigid and non-rigid registration of ultrasound volumes. IEEE Trans Med Imag. 2002;21:9–22.CrossRef Shekhar R, Zagrodsky V. Mutual information-based rigid and non-rigid registration of ultrasound volumes. IEEE Trans Med Imag. 2002;21:9–22.CrossRef
21.
go back to reference Likar B, Pernus F. A hierarchical approach to elastic registration based on mutual information. Imag Vis Comp. 2001;19:33–44.CrossRef Likar B, Pernus F. A hierarchical approach to elastic registration based on mutual information. Imag Vis Comp. 2001;19:33–44.CrossRef
22.
go back to reference Pluim JPW, Maintz JBA, Viergever MA. Mutual information matching in multiresolution contexts. Imag Vis Comp. 2001;19:45–52.CrossRef Pluim JPW, Maintz JBA, Viergever MA. Mutual information matching in multiresolution contexts. Imag Vis Comp. 2001;19:45–52.CrossRef
23.
go back to reference Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Imag Anal. 2001;5:143–56.CrossRef Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Imag Anal. 2001;5:143–56.CrossRef
24.
go back to reference Rezaei H, Azadi S, Ghorbani M. A hybrid particle swarm/steepest gradient algorithm for elastic brain image registration. Proc ICMV. 2009;20:54–8. Rezaei H, Azadi S, Ghorbani M. A hybrid particle swarm/steepest gradient algorithm for elastic brain image registration. Proc ICMV. 2009;20:54–8.
25.
go back to reference Tang M. Automatic registration and fast volume reconstruction from serial histology sections. Comput Vis Image Underst. 2011;115:1112–20.CrossRef Tang M. Automatic registration and fast volume reconstruction from serial histology sections. Comput Vis Image Underst. 2011;115:1112–20.CrossRef
26.
go back to reference Liao R, Guetter C, Xu CY, Sun YY, Khamena A, Sauer F. Learning-based 2D/3D rigid registration using Jensen–Shannon divergence for image-guided surgery. 3rd IWMIAR LNCS. 2006;4091:2745–52. Liao R, Guetter C, Xu CY, Sun YY, Khamena A, Sauer F. Learning-based 2D/3D rigid registration using Jensen–Shannon divergence for image-guided surgery. 3rd IWMIAR LNCS. 2006;4091:2745–52.
27.
go back to reference Plattard D, Soret M, Troccaz J, Vassal P, Giraud JY, Champleboux G, et al. Patient set-up using portal images: 2D/2D image registration using mutual information. Comput Aided Surg. 2000;5:246–62.PubMedCrossRef Plattard D, Soret M, Troccaz J, Vassal P, Giraud JY, Champleboux G, et al. Patient set-up using portal images: 2D/2D image registration using mutual information. Comput Aided Surg. 2000;5:246–62.PubMedCrossRef
28.
go back to reference Gonzalez RC, Woods RE. Digital image processing. 2nd ed. Upper Saddle River: Prentice Hall; 2002. p. 613–5. Gonzalez RC, Woods RE. Digital image processing. 2nd ed. Upper Saddle River: Prentice Hall; 2002. p. 613–5.
29.
go back to reference Lacroute P, Levey M. Fast volume rendering using a shear-warp factorization of the viewing transformation, Proc. SIGGRAPH ’94, 1994;451–8. Lacroute P, Levey M. Fast volume rendering using a shear-warp factorization of the viewing transformation, Proc. SIGGRAPH ’94, 1994;451–8.
30.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. 2nd ed. Cambridge: Cambridge University Press; 1992. p. 412–9. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. 2nd ed. Cambridge: Cambridge University Press; 1992. p. 412–9.
32.
go back to reference Mori S, Kobayashi M, Kumagai M, Minohara S. Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy. Radiol Phys Technol. 2009;2(1):40–5.PubMedCrossRef Mori S, Kobayashi M, Kumagai M, Minohara S. Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy. Radiol Phys Technol. 2009;2(1):40–5.PubMedCrossRef
33.
go back to reference Bom IMJ, Klein S, Staring M, Homan R, Bartels LW, Pluim JPW. Evaluation of optimization methods for intensity-based 2D–3D registration in X-ray guided interventions. Proc SPIE. 2011; 7962:796223 1–796223 15. Bom IMJ, Klein S, Staring M, Homan R, Bartels LW, Pluim JPW. Evaluation of optimization methods for intensity-based 2D–3D registration in X-ray guided interventions. Proc SPIE. 2011; 7962:796223 1–796223 15.
Metadata
Title
Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization
Authors
Takashi Ohnishi
Masahiko Suzuki
Tatsuya Kobayashi
Shinji Naomoto
Tomoyuki Sukegawa
Atsushi Nawata
Hideaki Haneishi
Publication date
01-01-2013
Publisher
Springer Japan
Published in
Radiological Physics and Technology / Issue 1/2013
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-012-0185-y

Other articles of this Issue 1/2013

Radiological Physics and Technology 1/2013 Go to the issue