Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

Risk of second cancer from scattered radiation of intensity-modulated radiotherapies with lung cancer

Authors: Dong Wook Kim, Weon Kuu Chung, Dongoh Shin, Seongeon Hong, Sung Ho Park, Sung-Yong Park, Kwangzoo Chung, Young Kyung Lim, Dongho Shin, Se Byeong Lee, Hyun-ho Lee, Myonggeun Yoon

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Purpose

To compare the risk of secondary cancer from scattered and leakage doses following intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and tomotherapy (TOMO) in patients with lung cancer.

Methods

IMRT, VMAT and TOMO were planned for five lung cancer patients. Organ equivalent doses (OEDs) are estimated from the measured corresponding secondary doses during irradiation at various points 20 to 80 cm from the iso-center by using radio-photoluminescence glass dosimeter (RPLGD).

Results

The secondary dose per Gy from IMRT, VMAT and TOMO for lung cancer, measured 20 to 80 cm from the iso-center, are 0.02~2.03, 0.03~1.35 and 0.04~0.46 cGy, respectively. The mean values of relative OED of secondary dose of VMAT and TOMO, which is normalized by IMRT, ranged between 88.63% and 41.59% revealing 88.63% and 41.59% for thyroid, 82.33% and 41.85% for pancreas, 77.97% and 49.41% for bowel, 73.42% and 72.55% for rectum, 74.16% and 81.51% for prostate. The secondary dose and OED from TOMO became similar to those from IMRT and VMAT as the distance from the field edge increased.

Conclusions

OED based estimation suggests that the secondary cancer risk from TOMO is less than or comparable to the risks from conventional IMRT and VMAT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Leibel SA, Fuks Z, Kutcher GJ, Mohan R: The biological basis and clinical application of three-dimensional conformal external beam radiation therapy in RTOG in carcinoma of the prostate. Semin Oncol 1944, 21: 580. Leibel SA, Fuks Z, Kutcher GJ, Mohan R: The biological basis and clinical application of three-dimensional conformal external beam radiation therapy in RTOG in carcinoma of the prostate. Semin Oncol 1944, 21: 580.
2.
go back to reference Zagars GK, Eschenbach AC, Ayala AG: The influence of local control on metastatic dissemination of prostate cancer treated by external beam megavoltage radiation therapy. Cancer 1991, 68: 2370-2377. 10.1002/1097-0142(19911201)68:11<2370::AID-CNCR2820681107>3.0.CO;2-TCrossRefPubMed Zagars GK, Eschenbach AC, Ayala AG: The influence of local control on metastatic dissemination of prostate cancer treated by external beam megavoltage radiation therapy. Cancer 1991, 68: 2370-2377. 10.1002/1097-0142(19911201)68:11<2370::AID-CNCR2820681107>3.0.CO;2-TCrossRefPubMed
3.
go back to reference Shipley WU, Verhey LJ, Munzenrider JE: Advanced prostate cancer: The results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Biol Phys 1995, 32: 3-12. 10.1016/0360-3016(95)00063-5CrossRef Shipley WU, Verhey LJ, Munzenrider JE: Advanced prostate cancer: The results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Biol Phys 1995, 32: 3-12. 10.1016/0360-3016(95)00063-5CrossRef
4.
go back to reference Zelefsky MJ, Leibel SA, Gaudin PB: Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Biol Phys 1998, 41: 491-500. 10.1016/S0360-3016(98)00091-1CrossRef Zelefsky MJ, Leibel SA, Gaudin PB: Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Biol Phys 1998, 41: 491-500. 10.1016/S0360-3016(98)00091-1CrossRef
5.
go back to reference Ling CC, Burman C, Chui CS: Conformal radiation treatment of prostate cancer using inversely-planned intensity- modulated photon beams produced with multileaf collimation. Int J Radiat Biol Phys 1996, 35: 721-730. 10.1016/0360-3016(96)00174-5CrossRef Ling CC, Burman C, Chui CS: Conformal radiation treatment of prostate cancer using inversely-planned intensity- modulated photon beams produced with multileaf collimation. Int J Radiat Biol Phys 1996, 35: 721-730. 10.1016/0360-3016(96)00174-5CrossRef
6.
go back to reference Nutting CM, Convery DJ, Cosgrove VP: Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Biol Phys 2000, 48: 649-656. 10.1016/S0360-3016(00)00653-2CrossRef Nutting CM, Convery DJ, Cosgrove VP: Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Biol Phys 2000, 48: 649-656. 10.1016/S0360-3016(00)00653-2CrossRef
7.
go back to reference Zelefsky MJ, Fuks Z, Hunt M: High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Biol Phys 2002, 53: 1111-1116. 10.1016/S0360-3016(02)02857-2CrossRef Zelefsky MJ, Fuks Z, Hunt M: High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Biol Phys 2002, 53: 1111-1116. 10.1016/S0360-3016(02)02857-2CrossRef
8.
go back to reference Brahme A, Roos JE, Lax I: Solution of an integral equation encountered in rotation therapy. Phys Med Biol 1982, 27: 1221-1229. 10.1088/0031-9155/27/10/002CrossRefPubMed Brahme A, Roos JE, Lax I: Solution of an integral equation encountered in rotation therapy. Phys Med Biol 1982, 27: 1221-1229. 10.1088/0031-9155/27/10/002CrossRefPubMed
9.
go back to reference Otto K: Voulmetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008, 35: 310. 10.1118/1.2818738CrossRefPubMed Otto K: Voulmetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008, 35: 310. 10.1118/1.2818738CrossRefPubMed
10.
go back to reference Yu CX: Intensity-modulated arc therapy with multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995, 40: 1435-1449. 10.1088/0031-9155/40/9/004CrossRefPubMed Yu CX: Intensity-modulated arc therapy with multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995, 40: 1435-1449. 10.1088/0031-9155/40/9/004CrossRefPubMed
11.
go back to reference Welsh JS, Patel RR, Ritter MA: Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res & Treatment 2002,1(4):311-316.CrossRef Welsh JS, Patel RR, Ritter MA: Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res & Treatment 2002,1(4):311-316.CrossRef
12.
go back to reference Mackie TT: History of tomotherapy. Phys Med Biol 2006, 51: 427-453. 10.1088/0031-9155/51/13/R24CrossRef Mackie TT: History of tomotherapy. Phys Med Biol 2006, 51: 427-453. 10.1088/0031-9155/51/13/R24CrossRef
13.
go back to reference Cao D, Holmes TW, Afghan MKN, Shepard DM: Comparison of plan quality provide by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Biol Phys 2007, 69: 240-250. 10.1016/j.ijrobp.2007.04.073CrossRef Cao D, Holmes TW, Afghan MKN, Shepard DM: Comparison of plan quality provide by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Biol Phys 2007, 69: 240-250. 10.1016/j.ijrobp.2007.04.073CrossRef
14.
go back to reference Hall EJ, Wuu C: Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Biol Phys 2003, 56: 83-88. 10.1016/S0360-3016(03)00073-7CrossRef Hall EJ, Wuu C: Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Biol Phys 2003, 56: 83-88. 10.1016/S0360-3016(03)00073-7CrossRef
15.
go back to reference Yoon M, Ahn SH, Kim JS: Radiation-induced cancers from modern radiotherapy techniques: Intensity-modulated radiotherapy versus proton therapy. Int J Radiat Biol Phys 2010, 77: 1477-1485. 10.1016/j.ijrobp.2009.07.011CrossRef Yoon M, Ahn SH, Kim JS: Radiation-induced cancers from modern radiotherapy techniques: Intensity-modulated radiotherapy versus proton therapy. Int J Radiat Biol Phys 2010, 77: 1477-1485. 10.1016/j.ijrobp.2009.07.011CrossRef
16.
go back to reference Kim S, Min BJ, Yoon M: Secondary radiation dose of intensity-modulated radiotherapy and proton beam therapy in patients with lung and liver cancer. Radiother Oncol 2011, 3: 335-339.CrossRef Kim S, Min BJ, Yoon M: Secondary radiation dose of intensity-modulated radiotherapy and proton beam therapy in patients with lung and liver cancer. Radiother Oncol 2011, 3: 335-339.CrossRef
17.
go back to reference Mackis R: In regard to Hall: Intensity-modulated radiation therapy, proton, and the risk of secondary cancers. Int J Radiat Biol Phys 2006, 66: 1593-1594.CrossRef Mackis R: In regard to Hall: Intensity-modulated radiation therapy, proton, and the risk of secondary cancers. Int J Radiat Biol Phys 2006, 66: 1593-1594.CrossRef
18.
go back to reference Howell RM, Hertel NE, Wang Z: Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies. Med Phys 2006, 33: 360-368. 10.1118/1.2140119CrossRefPubMed Howell RM, Hertel NE, Wang Z: Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies. Med Phys 2006, 33: 360-368. 10.1118/1.2140119CrossRefPubMed
19.
go back to reference William PC, Hounsell AR: X-ray leakage considerations for IMRT. Br J Radiol 2001, 74: 98-100.CrossRef William PC, Hounsell AR: X-ray leakage considerations for IMRT. Br J Radiol 2001, 74: 98-100.CrossRef
20.
go back to reference Followill D, Geis P, Boyer A: Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Biol Phys 1977, 38: 667-672.CrossRef Followill D, Geis P, Boyer A: Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Biol Phys 1977, 38: 667-672.CrossRef
21.
go back to reference Schneider U, Kaser-Hotz B: A simple dose–response relationship for modeling secondary cancer incidence after radiotherapy. Z Med Phys 2005, 15: 31-37.CrossRefPubMed Schneider U, Kaser-Hotz B: A simple dose–response relationship for modeling secondary cancer incidence after radiotherapy. Z Med Phys 2005, 15: 31-37.CrossRefPubMed
22.
go back to reference Schneider U, Zwahlen D, Ross D, Kaser-Hotz B: Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Biol Phys 2005, 61: 1510-1515. 10.1016/j.ijrobp.2004.12.040CrossRef Schneider U, Zwahlen D, Ross D, Kaser-Hotz B: Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Biol Phys 2005, 61: 1510-1515. 10.1016/j.ijrobp.2004.12.040CrossRef
23.
go back to reference Piesch E, Burgkhardt B, Vilgis M: Photoluminescence dosimetry: progress and present state of art. Radiat Prot Dosim 1990, 33: 215-225. Piesch E, Burgkhardt B, Vilgis M: Photoluminescence dosimetry: progress and present state of art. Radiat Prot Dosim 1990, 33: 215-225.
24.
go back to reference Corporation ATG: RPL glass dosimeter /Small element system Dose Ace. Tokyo: Asahi Glass Co., LTD; 2000. Corporation ATG: RPL glass dosimeter /Small element system Dose Ace. Tokyo: Asahi Glass Co., LTD; 2000.
25.
go back to reference Chiyoda Technol Corporation: Personal monitoring system by glass badge. Tokyo: Chiyoda Technol; 2003. Chiyoda Technol Corporation: Personal monitoring system by glass badge. Tokyo: Chiyoda Technol; 2003.
26.
go back to reference Hus SM, Yeh SH, Lin MS, Chen WL: Comparison on characteristics of radiophotoluminescent glass dosimeters and thermoluminescent dosimeters. Radiat Prot Dosim 2006, 119: 327-331. 10.1093/rpd/nci510CrossRef Hus SM, Yeh SH, Lin MS, Chen WL: Comparison on characteristics of radiophotoluminescent glass dosimeters and thermoluminescent dosimeters. Radiat Prot Dosim 2006, 119: 327-331. 10.1093/rpd/nci510CrossRef
27.
go back to reference Araki F, Moribe N, Shimonobou T, Yamashita Y: Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife. Med Phys 2004, 31: 1980-1986. 10.1118/1.1758351CrossRef Araki F, Moribe N, Shimonobou T, Yamashita Y: Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife. Med Phys 2004, 31: 1980-1986. 10.1118/1.1758351CrossRef
28.
go back to reference Jursinic PA: Characterization of optically stimulated luminescence dosimeters, OSLD, for clinical dosimetry measurements. Med Phys 2007, 34: 1690-1699. Jursinic PA: Characterization of optically stimulated luminescence dosimeters, OSLD, for clinical dosimetry measurements. Med Phys 2007, 34: 1690-1699.
29.
go back to reference Allen P, McKeveer SWS: Studies of PTTL and OSL in TLD400. Radiat Prot Dosim 1990, 33: 19-22. Allen P, McKeveer SWS: Studies of PTTL and OSL in TLD400. Radiat Prot Dosim 1990, 33: 19-22.
30.
go back to reference Kim DW, Chung WK, Shin DO: Dose reponse of commercially available optically stimulated luminescent detector for megavoltage photon and electron. Radiat Prot Dosim 2012,149(2):101-108. 10.1093/rpd/ncr223CrossRef Kim DW, Chung WK, Shin DO: Dose reponse of commercially available optically stimulated luminescent detector for megavoltage photon and electron. Radiat Prot Dosim 2012,149(2):101-108. 10.1093/rpd/ncr223CrossRef
31.
go back to reference Balog J, Lucas D, DeSouza C, Crilly R: Helical tomotherapy radiation leakage and shielding considerations. Med Phys 2005, 32: 710-719. 10.1118/1.1861521CrossRefPubMed Balog J, Lucas D, DeSouza C, Crilly R: Helical tomotherapy radiation leakage and shielding considerations. Med Phys 2005, 32: 710-719. 10.1118/1.1861521CrossRefPubMed
Metadata
Title
Risk of second cancer from scattered radiation of intensity-modulated radiotherapies with lung cancer
Authors
Dong Wook Kim
Weon Kuu Chung
Dongoh Shin
Seongeon Hong
Sung Ho Park
Sung-Yong Park
Kwangzoo Chung
Young Kyung Lim
Dongho Shin
Se Byeong Lee
Hyun-ho Lee
Myonggeun Yoon
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-47

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue